A STUDY OF DAMAGE MECHANICS THEORY IN FRACTIONAL DIMENSIONAL SPACE 1)
-
摘要: 结合损伤力学和分形几何理论,给出分数维空间中分形损伤变量定义ω(d,ζ)及其解析表达式.指出欧氏空间损伤变量ω0实际是分数维空间分形损伤变量ω(d,ζ)当维数取Euclidean维数时的一种特例,将欧氏空间损伤变量定义推广到分数维空间,建立起一种兼顾反映损伤细观结构效应和宏观损伤力学分析需要的损伤定义与描述方法.在此基础上,推导了材料损伤演化律和损伤本构关系的分形表达形式.作为例证,文中分析了单调压缩载荷下混凝土损伤及演化行为.实验对比分析表明:分形损伤模型较好地反映了混凝土实际损伤力学行为.
-
关键词:
- 损伤 /
- 分形 /
- 分数维空间 /
- 分形损伤变量,分形损伤演化律 /
- 分形损伤本构关系
Abstract: Of most importance in continuum damage mechanics is how to properly define a damage variable that is available for describing damage degree and its evolution. It plays a key role in correlating macro mechanical responses to their internal micro/meso damage effects in materials. As one of widely accepted effective approaches to define a damage variable, macro phenomenological definition performs a great advantage of being easily utilized in analyzing macro damage mechanical responses of materials and struct...-
Key words:
- damage /
- fractal /
- fractional dimensional space /
- fractal damage variable /
- fractal damage evolution law
-

计量
- 文章访问数: 1751
- HTML全文浏览量: 40
- PDF下载量: 1090
- 被引次数: 0