EI、Scopus 收录
中文核心期刊
梅凤翔, 吴润衡, 张永发. 非Четаев型非完整系统的Lie对称性与守恒量[J]. 力学学报, 1998, 30(4): 468-474. DOI: 10.6052/0459-1879-1998-4-1995-150
引用本文: 梅凤翔, 吴润衡, 张永发. 非Четаев型非完整系统的Lie对称性与守恒量[J]. 力学学报, 1998, 30(4): 468-474. DOI: 10.6052/0459-1879-1998-4-1995-150
LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS OF NON CHETAEV'S TYPE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(4): 468-474. DOI: 10.6052/0459-1879-1998-4-1995-150
Citation: LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS OF NON CHETAEV'S TYPE 1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 1998, 30(4): 468-474. DOI: 10.6052/0459-1879-1998-4-1995-150

非Четаев型非完整系统的Lie对称性与守恒量

LIE SYMMETRIES AND CONSERVED QUANTITIES OF NONHOLONOMIC SYSTEMS OF NON CHETAEV'S TYPE 1)

  • 摘要: 研究非Четаев型非完整系统的Lie对称性.首先利用微分方程在无限小变换下的不变性建立Lie对称所满足的确定方程和限制方程,给出结构方程并求出守恒量;其次研究上述问题的逆问题:根据已知积分求相应的Lie对称性;最后举例说明结果的应用.

     

    Abstract: There are two kinds of modern methods in finding conservation laws. One is the Noether method which is based on the invariance of the Hamilton's action under the infinitesimal transformations, the other one is the Lie method which is based on the invariance of the differential equations under infinitesimal transformations. In mathematics, the symmetry methods in the theory of differential equations have made great progress in recent years. In mechanics, the research on Lie symmetries and conservation l...

     

/

返回文章
返回