EI、Scopus 收录
中文核心期刊
张行, 崔德渝. 各向异性板应力强度因子的分区广义变分解法[J]. 力学学报, 1993, 25(5): 582-591. DOI: 10.6052/0459-1879-1993-5-1995-681
引用本文: 张行, 崔德渝. 各向异性板应力强度因子的分区广义变分解法[J]. 力学学报, 1993, 25(5): 582-591. DOI: 10.6052/0459-1879-1993-5-1995-681
THE SOLUTION OF STRESS INTENSITY FACTORS FOR NON-SYMMETRIC DOUBLE EDGE CRACKS IN ANISOTROPIC PLATES BY COMPLEX VARIABLE- GENERALIZED VARIATIONAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 582-591. DOI: 10.6052/0459-1879-1993-5-1995-681
Citation: THE SOLUTION OF STRESS INTENSITY FACTORS FOR NON-SYMMETRIC DOUBLE EDGE CRACKS IN ANISOTROPIC PLATES BY COMPLEX VARIABLE- GENERALIZED VARIATIONAL METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 1993, 25(5): 582-591. DOI: 10.6052/0459-1879-1993-5-1995-681

各向异性板应力强度因子的分区广义变分解法

THE SOLUTION OF STRESS INTENSITY FACTORS FOR NON-SYMMETRIC DOUBLE EDGE CRACKS IN ANISOTROPIC PLATES BY COMPLEX VARIABLE- GENERALIZED VARIATIONAL METHOD

  • 摘要: 本文以单边边缘裂纹二维应力场与位移场的级数展开式为基础,以分区广义变分原理求解含双边非对称边缘裂纹板的应力强度因子。首先建立精确满足各向异性板基本微分方程和裂纹表面边界条件的应力场和位移场的本征展开式,然后用分区广义变分原理满足其余边界条件与交界连续条件并由此确定应力强度因子。在变分方程中只有沿板边界的线积分。计算程序简单,输入数据很少,结果收敛迅速并与已有结果完全吻合,同时计算节省机时与人力。本文还给出了有关的全新计算曲线。

     

    Abstract: Description is given of a complex variable-generalized variational method to investigate the stress intensity factors(S.I.F.) associated with the non-symmetric double edge cracks in anisotropic plates. In this work a cracked plate is decomposed into two subregions with edge cracks. According to the theory of anisotropic elasticity, the stress and displacement series which satisfy all basic equations and stress-free boundary conditions on crack surfaces are established. By using a generalized variational pri...

     

/

返回文章
返回