EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非晶合金剪切带动力学行为研究

董杰 王雨田 胡晶 孙保安 汪卫华 白海洋

董杰, 王雨田, 胡晶, 孙保安, 汪卫华, 白海洋. 非晶合金剪切带动力学行为研究[J]. 力学学报, 2020, 52(2): 379-391. doi: 10.6052/0459-1879-19-378
引用本文: 董杰, 王雨田, 胡晶, 孙保安, 汪卫华, 白海洋. 非晶合金剪切带动力学行为研究[J]. 力学学报, 2020, 52(2): 379-391. doi: 10.6052/0459-1879-19-378
Dong Jie, Wang Yutian, Hu Jing, Sun Baoan, Wang Weihua, Bai Haiyang. SHEAR-BAND DYNAMICS IN METALLIC GLASSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391. doi: 10.6052/0459-1879-19-378
Citation: Dong Jie, Wang Yutian, Hu Jing, Sun Baoan, Wang Weihua, Bai Haiyang. SHEAR-BAND DYNAMICS IN METALLIC GLASSES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391. doi: 10.6052/0459-1879-19-378

非晶合金剪切带动力学行为研究

doi: 10.6052/0459-1879-19-378
基金项目: 1)国家自然科学基金项目(51822107);国家自然科学基金项目(51671121);国家自然科学基金项目(51761135125);国家重点研发计划项目(2018YFA0703603);中国科学院战略性先导科技专项(B类XDB30000000);广东省基础与应用基础研究重大项目基金(2019B030302010)
详细信息
    通讯作者:

    孙保安,白海洋

    白海洋

  • 中图分类号: U260.17

SHEAR-BAND DYNAMICS IN METALLIC GLASSES

  • 摘要: 剪切带是一种材料塑性变形高度局域化的变形模式, 广泛存在于非晶体系的形变中, 控制着这些无序体系失稳、灾难性断裂行为.传统的非晶体系如岩石, 胶体, 玻璃和聚合物等因较差的力学性能以及过于复杂的结构而不利于剪切带的实验研究. 近几十年来, 非晶合金的出现极大丰富了剪切带的研究, 推进了对剪切带的认识. 通过大量非晶合金中剪切带的实验和理论研究, 人们发现剪切带行为具有空间不均匀性和时间不连续性的特征, 表现出复杂的动力学特征, 和自然界以及物理系统中许多复杂体系的动力学行为相似.同时, 剪切带的性质尤其是其动力学行为对非晶合金的宏观力学行为和性能有重要的影响, 对理解这类材料的微观变形机理也起着重要的作用.本文结合团队近年来在非晶合金剪切带行为方面的研究结果, 对剪切带的运动行为和物理机制进行介绍, 包剪切带间歇性运动行为、以及间歇性运动在表征其动力学性质中的作用以及物理机制, 以及剪切带的自组织临界行为、物理机制等.最后对非晶合金剪切带行为研究中亟需解决的问题进行了总结和展望.

     

  • [1] 汪卫华 . 非晶态物质的本质和特性. 物理学进展, 2013,33(5):177-351
    [1] ( Wang Weihua . The nature and properties of amorphous matter. Progress in Physics, 2013,33(5):177-351 (in Chinese))
    [2] Greer AL, Cheng YQ, Ma E , et al. Shear bands in metallic glasses. Materials Science and Engineering R, 2013(4), 74:71-132
    [3] Fall A, Bertrand F, Ovarlez G , et al. Yield Stress and Shear Banding in Granular Suspensions. Physical Review Letters, 2009,103(17):178301
    [4] M?ller PCF, Rodts S, Michels MAJ , et al. Shear banding and yield stress in soft glassy materials. Physical Review E, 2008,77(4):041507
    [5] Klement W, Willens RH, Duwez P , et al. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960,187(4740):869-870
    [6] Greer AL . Metallic glasses. Science, 1995,267(5206):1947-1953
    [7] Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000,48(1):279-306
    [8] Schuh C, Hufnagel T, Ramamurty U , et al. Mechanical behavior of amorphous alloys. Acta Materialia, 2007,55(12):4067-4109
    [9] Jiang WH, Liu FX, Liaw PK , et al. Shear strain in a shear band of a bulk-metallic glass in compression. Applied Physics Letters, 2007,90(18):181903
    [10] Dong J, Gao M, Huan Y , et al. Enhanced tensile plasticity of Zr based bulk metallic glasses by a stress induced large scale flow. Journal of Alloys and Compounds, 2017,727:297-303
    [11] Schroers J, Johnson W L . Ductile bulk metallic glass. Physical Review Letters, 2004,93(25):255506
    [12] Demetriou MD, Launey ME, Garrett G , et al. A damage-tolerant glass. Nature Materials, 2001,10(2):123-128
    [13] Schuh CA, Nieh TG . A nanoindentation study of serrated flow in bulk metallic glasses. Acta Materialia, 2003,51(1):87-99
    [14] Wang Z, Qiao JW, Tian H , et al. Composition mediated serration dynamics in Zr-based bulk metallic glasses. Applied Physics Letters, 2015,107(20):201902
    [15] Song SX, Bei H, Wadsworth J , et al. Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics, 2008,16(6):813-818
    [16] Sun BA, Pauly S, Hu J , et al. Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses. Physical Review Letters, 2013,110(22):225501
    [17] Sun BA, Yu HB, Zhao DQ , et al. Plasticity of ductile metallic glasses: a self-organized critical state. Physical Review Letters, 2010,105(3):035501
    [18] 孙保安 . 金属玻璃剪切带动力学和塑性变形机理. [博士论文]. 北京: 中国科学院, 2010
    [18] ( Sun Baoan . The dynamics of shear bands and plastic deformation mechanism in bulk metallic glasses. [PhD Thesis]. Beijing: Chinese Academy of Sciences, 2010 (in Chinese))
    [19] Yu HB, Hu J, Xia XX , et al. Stress-induced structural inhomogeneity and plasticity of bulk metallic glasses. Scripta Materialia, 2009,61(6):640-643
    [20] Torre HD, Dubach A, Siegrist ME , et al. Negative strain rate sensitivity in bulk metallic glass and its similarities with the dynamic strain aging effect during deformation. Applied Physics Letters, 2006,89(9):091918
    [21] Bailey NP, Schiotz J, Lemaitre A , et al. Avalanche size scaling in sheared three-dimensional amorphous solid. Physical Review Letters, 2007,98(9):095501
    [22] 刘晶波, 谭辉, 宝鑫 等. 土-结构动力相互作用分析中基于人工边界子结构的地震波动输入方法. 力学学报, 2018,50(1):32-43
    [22] ( Liu Jingbo, Tan Hui, Bao Xin , et al. The seismic wave input method for soil-structure dynamic interaction analysis based on the substructure of artificial boundaries. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):32-43 (in Chinese))
    [23] 李青, 邢立坤, 柏江 等. 航天器噪声试验中结构振动响应预示方法研究. 力学学报, 2019,51(2):569-576
    [23] ( Li Qing, Xing Likun, Bai Jiang , et al. Method study on response prediction of structural vibrations in spacecraft acoustic tests. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):569-576 (in Chinese))
    [24] 刘兴天, 陈树海, 王嘉登 等. 几何非线性摩擦阻尼隔振系统动力学行为研究. 力学学报, 2019,51(2):371-379
    [24] ( Liu Xingtian, Chen Shuhai, Wang Jiadeng , et al. Anlysis of the dynamic behavior and performance of a vibration isolation system with geometric nonlinear friction damping. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):371-379 (in Chinese))
    [25] Song SX, Nieh TG . Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass. Intermetallics, 2009,17(9):762-767
    [26] Dubach A, Torre FHD, L?ffler JF , et al. Constitutive model for inhomogeneous flow in bulk metallic glasses. Acta Materialia, 2009,57(3):881-892
    [27] Wang YT, Dong J, Liu YH , et al. Optimum shear stability at intermittent-to-smooth transition of plastic flow in metallic glasses at cryogenic temperatures. Materialia, 2020,9:100559
    [28] Hu J, Sun BA, Yang Y , et al. Intrinsic versus extrinsic effects on serrated flow of bulk metallic glasses. Intermetallics, 2015,66:31-39
    [29] Wright WJ, Samale MW, Hufnagel TC , et al. Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Materialia, 2009,57(16):4639-4648
    [30] Bak P, Tang C, Wiesenfeld K , et al. Self-organized criticality: An explanation of the 1/f noise. Physical Review Letters, 1987,59(4):381
    [31] Bak P . How nature works: The science of self-organized criticality. Complexity, 1997,2(6):30-33
    [32] Johnson WL, Samwer K . A universal criterion for plastic yielding of metallic glasses with a $(T/T_{\rm g})^{2/3}$ temperature dependence. Physical Review Letters, 2005,95(19):195501
    [33] Mandelbrot BB . The Fractal Geometry of Nature, San Franciso: Freeman, W. H. Freeman and Company, 1982
    [34] 王东升, 曹磊 . 混沌、分形及其应用. 合肥: 中国科学技术大学出版社, 1995
    [35] Vicsek T . Fractal Growth Phenomena . Singapore: World Scientific, 1992
    [36] Sun BA, Wang WH . Fractal nature of multiple shear bands in severely deformed metallic glass. Applied Physics Letters, 2011,98(20):201902
    [37] Bei H, Xie S, George EP . Softening Caused by Profuse Shear Banding in a Bulk Metallic Glass. Physical Review Letters, 2006,96:105503
  • 加载中
计量
  • 文章访问数:  642
  • HTML全文浏览量:  67
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-31
  • 刊出日期:  2020-04-10

目录

    /

    返回文章
    返回