EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝头体中的广义雷诺比拟关系

陈星星 陈皓 范晶晶 温玉芬 张正 马友林

陈星星, 陈皓, 范晶晶, 温玉芬, 张正, 马友林. 钝头体中的广义雷诺比拟关系[J]. 力学学报, 2020, 52(4): 1055-1062. doi: 10.6052/0459-1879-19-365
引用本文: 陈星星, 陈皓, 范晶晶, 温玉芬, 张正, 马友林. 钝头体中的广义雷诺比拟关系[J]. 力学学报, 2020, 52(4): 1055-1062. doi: 10.6052/0459-1879-19-365
Chen Xingxing, Chen Hao, Fan Jingjing, Wen Yufen, Zhang Zheng, Ma Youlin. GENERAL REYNOLDS ANALOGY RELATION ON BLUNT-NOSED BODIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1055-1062. doi: 10.6052/0459-1879-19-365
Citation: Chen Xingxing, Chen Hao, Fan Jingjing, Wen Yufen, Zhang Zheng, Ma Youlin. GENERAL REYNOLDS ANALOGY RELATION ON BLUNT-NOSED BODIES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1055-1062. doi: 10.6052/0459-1879-19-365

钝头体中的广义雷诺比拟关系

doi: 10.6052/0459-1879-19-365
基金项目: 1)国家自然科学基金(11202224)
详细信息
    通讯作者:

    陈星星

  • 中图分类号: O35

GENERAL REYNOLDS ANALOGY RELATION ON BLUNT-NOSED BODIES

  • 摘要: 钝头体壁面的摩阻和热流分布规律不同,平板流动中的雷诺比拟关系在钝头体壁面失效. 文章在前期高超声速广义雷诺比拟理论研究工作的基础上,利用数值仿真的方法对不同外形和来流参数条件下的钝头体广义雷诺比拟关系开展进一步研究. 通过建立钝头体绕流边界层的理论分析模型,得到了钝头体壁面雷诺比拟系数的线性分布预示公式. 采用数值求解 N-S 方程的方法,计算了圆柱和幂次体壁面的摩阻和热流以及二者之间的比拟系数. 通过与前期数值和理论结果对比,以及计算收敛性和网格无关性检验,对数值方法进行了验证. 通过在不同雷诺数 ($Re_\infty = 3.98\times 10^2 \sim 1.59\times 10^6$) 和马赫数 ($M_\infty = 3\sim 12$) 条件下的计算结果对比分析雷诺比拟系数的分布,总结了钝头体中广义雷诺比拟关系受外形和来流条件的影响,评估了广义雷诺比拟理论的适用性. 研究发现,在较高雷诺数条件下,离驻点较远的下游 ($\theta > 60^\circ$) 部位,雷诺比拟系数的分布不同程度地偏离理论预示的线性规律. 相比于圆柱外形,幂次体壁面的雷诺比拟系数分布的线性规律相对较好,其分布斜率略低于圆柱壁面的结果. 研究表明,如果针对实际外形和雷诺数进行适当修正,可以提高广义雷诺比拟关系的预示精度.

     

  • [1] Reynolds O. On the extent and action of the heating surface for steam boilers. Proc Lit Phil Soc Manchester, 1874,14(1):7-2
    [2] Blasius H. Grenzschichten in flüessigkeiten mit kleiner ribung. Zeitschrift fuer Mathematik und Physik, 1908,56(1):1-37
    [3] Li TY, Nagamatsu HT. Similar solutions of compressible boundary-layer equations. Journal of the Aeronautical Sciences, 1953,20(9):653-55
    [4] Cohen CB. Similar solutions of compressible laminar boundary-Layer equations. Journal of the Aeronautical Sciences, 1954,21(4):281-82
    [5] Chen XX, Wang ZH, Yu YL. Nonlinear shear and heat transfer in hypersonic rarefied flows past flat plates. AIAA Journal, 2015,53(2):413-419
    [6] Abramov A, Butkovskii A. Extended Reynolds analogy for the rarefied Rayleigh problem: Similarity parameters// AIP Conference Proceedings 2132,2019
    [7] Jiang LY, Campbell I. Reynolds analogy in combustor modeling. International Journal of Heat and Mass Transfer, 2008,51(1):1251-263
    [8] 丛彬彬, 万田. 高速双锥绕流中热化学与输运模型影响研究. 力学学报, 2019,51(4):1012-1021
    [8] ( Cong Binbin, Wan Tian. Effects of thermochemical and transport models on the high-speed double-cone flowfield. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1012-1021 (in Chinese))
    [9] Van Driest ER. Turbulent boundary layer in compressible fluids. Journal of Spacecraft and Rockets, 1951,18(3):145-160
    [10] Van Driest ER. Investigation of laminar boundary Crocco method. NACA-TN-2597, 1952
    [11] Van Driest ER. The problem of aerodynamic heating. Aeronautical Engineering Review, 1956,15(1):26-41
    [12] Spalding DB, Chi SW. The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. Journal of Fluid Mechanics, 1964,18(1):117-143
    [13] Eckert ERG. Engineering relations for friction and heat transfer to surfaces in high velocity flow. Journal of the Aeronautical Sciences, 1955,22(8):585-587
    [14] 蒋友娣, 董葳, 陈勇. 高超声速钝头体变熵表面热流计算. 航空动力学报, 2008,23(9):1591-1594
    [14] ( Jiang Youdi, Dong Wei, Chen Yong. Surface heat flux calculation of variable entropy flow for hypersonic blunt bodies. Journal of Aerospace Power, 2008,23(9):1591-1594 (in Chinese))
    [15] Chi RW, Maleina CB, Turbulence models and Reynolds analogy for two-dimensional supersonic compression ramp flow. NASA-TM-106474, 1994
    [16] 梁贤, 李新亮, 傅德薰 等. Mach 8 的平板可压缩湍流边界层直接数值模拟及分析. 中国科学: 物理学力学天文学, 2012,42(3):282-293
    [16] ( Liang Xian, Li Xinliang, Fu Dexun, et al. DNS and analysis of a spatially evolving hypersonic turbulent boundary layer over a flat plate at Mach 8. Sci Sin-Phys Mech Astron, 2012,42(3):282-293 (in Chinese))
    [17] She ZS, Zou HY, Xiao MJ, et al. Prediction of compressible turbulent boundary layer via a symmetry-based length model. Journal of Fluid Mechanics, 2018,857(1):449-468
    [18] 姜宗林, 李进平, 胡宗民 等. 高超声速飞行复现风洞理论与方法. 力学学报, 2018,50(6):1283-1291
    [18] ( Jiang Zonglin, Li Jinping, Hu Zongmin, et al. Shock tunnel theory and methods for duplicating hypersonic flight conditions. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1283-1291 (in Chinese))
    [19] Chen XX, Wang ZH, Yu YL. General Reynolds analogy for blunt-nosed bodies in hypersonic flows. AIAA Journal, 2015,53(8):2410-2416
    [20] Anderson JD. Hypersonic and High Temperature Gas Dynamics. 2nd ed. New York: McGraw-Hill Book Company, 2006: 270-271
    [21] Chen XX, Wang ZH, Yu YL. General Reynolds analogy on curved surfaces in hypersonic rarefied gas flows with non-equilibrium chemical reactions// 30th International Symposium on Rarefied Gas Dynamics (RGD), Victorial, Canada, 2016-7-10-15, AIP Conference Proceedings 1786, 150009, 2006
    [22] 屈程, 王江峰. DSMC 计算中碰撞对取样和时间推进环节的高效处理方法. 空气动力学报, 2018,36(1):52-56
    [22] ( Qu Cheng, Wang Jiangfeng. High efficient processing method for DSMC calculation in chains of collision pair selection and time integration. Acta Aeradynamics Sinica, 2018,36(1):52-56 (in Chinese))
    [23] Qian G, Ramesh KA. Computations of rarefied hypersonic blunt body flow in binary inert gas mixtures using the generalized Boltzmann equation// AIP Conference Proceedings 2132,100011, 2019
    [24] 杨超, 孙泉华. 高温气体热化学反应的DSMC微观模型分析. 力学学报, 2018,50(4):722-733
    [24] ( Yang Chao, Sun Quanhua. Analysis of dsmc reaction models for high temperature gas simulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):722-733 (in Chinese))
    [25] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds. Journal of Jet Propulsion, 1956,26(4):259-69
    [26] Fay JA, Riddell FR. Theory of stagnation point heat transfer in dissociated air. Journal of the Aeronautical Science, 1958,25(2):73-85
    [27] Wang ZH, Bao L, Tong BG. Rarefaction criterion and non-Fourier heat transfer in hypersonic rarefied flows. Physics of Fluids, 2010,22:126103
    [28] 王智慧. 尖化前缘气动加热受稀薄气体效应和非平衡真实气体效应的工程理论. [博士论文]. 北京: 中国科学院研究生院, 2011
    [28] ( Wang Zhihui. A theoretical modelling of aeroheating on sharpened noses under rarefied gas effects and nonequilibrium real gas effect. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2011 (in Chinese))
    [29] 王智慧, 鲍麟, 童秉纲. 尖化前缘的稀薄气体化学非平衡流动和气动加热相似律研究. 气体物理, 2016,1(1):5-12.
    [29] ( Wang Zhihui, Bao Lin, Tong Binggang. Similarity law of aero-heating to sharpened nosed in rarefied chemical nonequilibrium flows. Physics of Gases, 2016,1(1):5-12 (in Chinese))
    [30] Hoffmann KA, Siddiqui MS, Chiang ST. Difficulties associated with the heat flux computations of high speed flows by the Navier-Stokes equations. AIAA Paper 91-0467, 1991
    [31] Lee JH, Rho OH. Accuracy of AUSM+ scheme in hypersonic blunt body flow calculations. AIAA Paper 98-1538, 1998
    [32] Ashwani A, Nived MR, Nikhil NK, et al. A numerical study of shock and heating with rarefaction for hypersonic flow over a cylinder. Journal of Heat Transfer, 2020,142(1):014501
    [33] Schwartzentruber TE, Leonardo CS, Iain DB. Hybrid particle-continuum simulations of non-equilibrium hypersonic blunt body flow fields. AIAA Paper 2006-3602, 2006
    [34] Lees L. Hypersonic flow. Journal of Spacecraft and Rockets, 1955,40(5):700-735
    [35] Korobkin I. Laminar heat transfer characteristics of a hemisphere for the Mach number range 1.9 to 4.9., AIAA Paper 2006-NAVORD Report No. 3841, 1954
    [36] Pan D, Ramesh KA. Numerical drag prediction of NASA common research models using differcent turbulence models. Computers & Fluids, 2019,191(15), 104238
  • 加载中
计量
  • 文章访问数:  1840
  • HTML全文浏览量:  375
  • PDF下载量:  143
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 刊出日期:  2020-08-10

目录

    /

    返回文章
    返回