EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机和区间非齐次线性哈密顿系统的比较研究及其应用

邱志平 姜南

邱志平, 姜南. 随机和区间非齐次线性哈密顿系统的比较研究及其应用[J]. 力学学报, 2020, 52(1): 60-72. doi: 10.6052/0459-1879-19-348
引用本文: 邱志平, 姜南. 随机和区间非齐次线性哈密顿系统的比较研究及其应用[J]. 力学学报, 2020, 52(1): 60-72. doi: 10.6052/0459-1879-19-348
Qiu Zhiping, Jiang Nan. COMPARATIVE STUDY OF STOCHASTIC AND INTERVAL NON-HOMOGENEOUS LINEAR HAMILTONIAN SYSTEMS AND THEIR APPLICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 60-72. doi: 10.6052/0459-1879-19-348
Citation: Qiu Zhiping, Jiang Nan. COMPARATIVE STUDY OF STOCHASTIC AND INTERVAL NON-HOMOGENEOUS LINEAR HAMILTONIAN SYSTEMS AND THEIR APPLICATIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 60-72. doi: 10.6052/0459-1879-19-348

随机和区间非齐次线性哈密顿系统的比较研究及其应用

doi: 10.6052/0459-1879-19-348
基金项目: 1) 国家自然科学基金(11772026);国防基础科研计划(JCKY2016204B101);国防基础科研计划(JCKY2018601B001)
详细信息
    通讯作者:

    邱志平

  • 中图分类号: O343

COMPARATIVE STUDY OF STOCHASTIC AND INTERVAL NON-HOMOGENEOUS LINEAR HAMILTONIAN SYSTEMS AND THEIR APPLICATIONS

  • 摘要: 随着计算机技术的飞速发展,更高效、更稳定和长时间模拟能力更强的数值算法需求迫切.哈密顿系统辛算法与传统算法相比在稳定性和长期模拟方面具有显著优越性.但动力系统中不可避免地存在大量不同程度的不确定性,动力学分析中需要考虑这些不确定性的影响以确保合理有效性. 然而,目前考虑参数不确定性的哈密顿系统响应分析的研究基础还比较薄弱. 为此,本文考虑随机和区间参数不确定性,对两种不确定性非齐次线性哈密顿系统分析计算结果进行了比较研究,从而突破了传统哈密顿系统的局限性, 并应用于结构动力响应评估中. 首先,针对确定性非齐次线性哈密顿系统, 提出了考虑确定性扰动的参数摄动法;在此基础上, 分别提出了随机、区间非齐次线性哈密顿系统的参数摄动法,得到了它们响应界限的数学表达; 随后,用数学理论推导得到了区间响应范围包含随机响应范围的相容性结论; 最后,两个数值算例在较小时间步长下验证了所提方法在结构动力响应中的可行性和有效性,体现了随机、区间哈密顿系统响应结果之间的包络关系,并在较大时间步长下与传统方法相比较凸显了哈密顿系统辛算法的数值计算优势、与蒙特卡洛模拟方法相比较验证了所提方法的精度.

     

  • [1] 李鸿晶, 梅雨辰, 任永亮 . 一种结构动力时程分析的积分求微方法. 力学学报, 2019,51(5):1507-1516
    [1] ( Li Hongjing, Mei Yuchen, Ren Yongliang . An integral differentiation procedure for dynamic time-history response analysis of structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1507-1516 (in Chinese))
    [2] 冯康, 秦孟兆 . 哈密尔顿系统的辛几何算法. 杭州: 浙江科学技术出版社, 2003
    [2] ( Feng Kang, Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems. Hangzhou: Zhejiang Science and Technology Press, 2003 (in Chinese))
    [3] Feng K, Qin MZ. Symplectic Geometric Algorithms for Hamiltonian Systems. Hangzhou: Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, and Berlin Heidelberg: Springer-Verlag, 2010
    [4] 郑丹丹, 罗建军, 张仁勇 等. 基于混合Lie算子辛算法的不变流形计算. 力学学报, 2017,49(5):1126-1134
    [4] ( Zheng Dandan, Luo Jianjun, Zhang Renyong , et al. Computation of invariant manifold based on symplectic algorithm of mixed Lie operator. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1126-1134 (in Chinese))
    [5] 张高超 . 基于空间滤波技术的高稳定度辛算法研究. [硕士论文]. 合肥: 安徽大学, 2017
    [5] ( Zhang Gaochao . Research on high stability symplectic algorithm based on spatial filtering technique. [Master Thesis]. Hefei: Anhui University, 2017 (in Chinese))
    [6] Ruth RD . A canonical integration technique. IEEE Transactions on Nuclear Science, 1983, NS- 30(4):2669-2671
    [7] Feng K. On difference schemes and symplectic geometry//Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations. Beijing: Science Press, 1984: 42-58
    [8] Sanz-Serna JM . Runge-Kutta schemes for Hamiltonian systems. BIT Numerical Mathematics, 1988,28(4):877-883
    [9] Lasagni FM . Canonical Runge-Kutta methods. Zeitschrift für Angewandte Mathematik und Physik, 1988,39(6):952-953
    [10] Suris YB . On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems//Filipplv SS ed. Numerical Solution of Ordinary Differential Equations. Moscow: Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, 1988: 148-160
    [11] Sun G . Symplectic partitioned Runge-Kutta methods. Journal of Computational Mathematics, 1993,11(4):365-372
    [12] Bridges TJ . Multisymplectic structures and wave propagation. Mathematical Proceedings of Cambridge Philosophical Society, 1997,121(1):147-190
    [13] Reich S . Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 2000,157(2):473-499
    [14] Marsden JE, Patrick GW, Shkoller S . Multisymplectic geometry, variational integrators, and nonlinear PDEs. Computer Physics Communications, 1998,199(2):351-395
    [15] Hairer E, Lubich C, Wanner G . Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second Edition. Springer Series in Computational Mathematics, 31, Berlin: Springer-Verlag, 2006
    [16] Sun ZJ . A meshless symplectic method for two-dimensional nonlinear Schrodinger equations based on radial basis function approximation. Engineering Analysis with Boundary Elements, 2019,104:1-7
    [17] Tang WS, Sun YJ, Zhang JJ . High order symplectic integrators based on continuous-stage Runge-Kutta-Nystrom methods. Applied Mathematics and Computation, 2019,361:670-679
    [18] 刘海波, 姜潮, 郑静 等. 含概率与区间混合不确定性的系统可靠性分析方法. 力学学报, 2017,49(2):456-466
    [18] ( Liu Haibo, Jiang Chao, Zheng Jing , et al. A system reliability analysis method for structures with probability and interval mixed uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):456-466 (in Chinese))
    [19] Wang L, Xiong C, Wang XJ , et al. A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis. Applied Mathematical Modelling, 2018,59:680-695
    [20] Xiong C, Wang L, Liu GH , et al. An iterative dimension-by-dimension method for structural interval response prediction with multidimensional uncertain variables. Aerospace Science and Technology, 2019,86:572-581
    [21] 唐冶, 王涛, 丁千 . 主动控制压电旋转悬臂梁的参数振动稳定性分析. 力学学报, 2019,51(6):1872-1881
    [21] ( Tang Ye, Wang Tao, Ding Qian . Stability analysis on parametric vibration of piezoelectric rotating cantilever beam with active control. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1872-1881 (in Chinese))
    [22] Moens D, Vandepitte D . Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Archives of Computational Methods in Engineering, 2006,13(3):389-464
    [23] 邱志平, 王晓军, 许孟辉 . 工程结构不确定优化设计技术. 北京: 科学出版社, 2013
    [23] ( Qiu Zhiping, Wang Xiaojun, Xu Menghui. Uncertainty-based Design and Optimization of Structures in Engineering. Beijing: Science Press, 2013 (in Chinese))
    [24] Milstein GN, Repin YM, Tretyakov MV . Symplectic integration of Hamiltonian systems with additive noise. SIAM Journal on Numerical Analysis, 2002,39(6):2066-2088
    [25] 王丽瑾 . 随机哈密顿系统的变分积分子与生成函数. [博士论文]. 北京: 中国科学院研究生院, 2007
    [25] ( Wang Lijin . Variational integrators and generating functions for stochastic Hamiltonian systems. [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences, 2007 (in Chinese))
    [26] Bou-Rabee N, Owhadi H . Stochastic variational integrators. IMA Journal of Numerical Analysis, 2009,29(2):421-443
    [27] Han MG, Ma Q, Ding XH . High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise. Applied Mathematics and Computation, 2019,346:575-593
    [28] Li XY, Zhang CP, Ma Q , et al. Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems. Taiwanese Journal of Mathematics, 2019,23(3):703-725
    [29] 朱位秋 . 随机激励的可积与不可积Hamilton系统的精确平稳解. 科学通报, 1995,40(21):1942-1946
    [29] ( Zhu Weiqiu . Exact stationary solutions of integrable and non-integrable Hamiltonian systems with random excitations. Chinese Science Bulletin, 1995,40(21):1942-1946 (in Chinese))
    [30] 朱位秋 . 非线性随机动力学与控制-Hamilton理论体系框架. 北京: 科学出版社, 2003
    [30] ( Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control-Hamiltonian Theoretical Framework. Beijing: Science Press, 2003 (in Chinese))
    [31] Luo E, Huang WJ, Zhang HX . Unconventional Hamilton-type variational principle in phase space and symplectic algorithm. Science in China (Series G), 2003,46(3):248-258
    [32] 郭静, 邢誉峰 . 结构动力学方程的辛RK方法. 应用数学和力学, 2014, 35(1):12-21
    [32] ( Guo Jing, Xing Yufeng . Symplectic Runge-Kutta method for structural dynamics. Applied Mathematics and Mechanics, 2014, 35(1):12-21 (in Chinese))
    [33] Xing YF, Zhang HM, Wang ZK . Highly precise time integration method for linear structural dynamic analysis. International Journal for Numerical Methods in Engineering, 2018,116(8):505-529
    [34] 高强, 张洪武, 张亮 等. 拉压刚度不同桁架的动力参变量变分原理和保辛算法. 振动与冲击, 2013,32(4):184-189
    [34] ( Gao Qiang, Zhang Hongwu, Zhang Liang , et al. Dynamic parametric variational principle and symplectic algorithm for trusses with different tensional and compressional stiffnesses. Journal of Vibration and Shock, 2013,32(4):184-189 (in Chinese))
    [35] Li WH, Sun HY . A symplectic method for dynamic response of structures. Applied Mechanics and Materials, 2015,724:7-11
    [36] Yang DD, Huang JF, Zhao WJ . A quasi-dynamic model and a symplectic algorithm of super slender Kirchhoff rod. International Journal of Modeling Simulation and Scientific Computing, 2017,8(3):1750037
    [37] 杨涛 . 梁振动方程的保结构算法. [硕士论文]. 南京: 南京师范大学, 2015
    [37] ( Yang Tao . Structure-preserving algorithms for vibration equation of beams. [Master Thesis]. Nanjing: Nanjing Normal University, 2015 (in Chinese))
    [38] 秦于越, 邓子辰, 胡伟鹏 . 冲击荷载作用下中心对称薄圆板振动的多辛分析. 西北工业大学学报, 2013,31(6):931-934
    [38] ( Qin Yuyue, Deng Zichen, Hu Weipeng . Multi-symplectic analysis of vibration of centrosymmetric thin circular plate under impact load. Journal of Northwestern Polytechnical University, 2013,31(6):931-934 (in Chinese))
    [39] 刘雪梅, 邓子辰, 胡伟鹏 . 饱和多孔弹性杆流固耦合动力响应的保结构算法. 应用数学和力学, 2016,37(10):1050-1059
    [39] ( Liu Xuemei, Deng Zichen, Hu Weipeng . Structure-preserving algorithm for fluid-solid coupling dynamic responses of saturated poroelastic rods. Applied Mathematics and Mechanics, 2016,37(10):1050-1059 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1311
  • HTML全文浏览量:  288
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回