[1] | 李鸿晶, 梅雨辰, 任永亮 . 一种结构动力时程分析的积分求微方法. 力学学报, 2019,51(5):1507-1516 |
[1] | ( Li Hongjing, Mei Yuchen, Ren Yongliang . An integral differentiation procedure for dynamic time-history response analysis of structures. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1507-1516 (in Chinese)) |
[2] | 冯康, 秦孟兆 . 哈密尔顿系统的辛几何算法. 杭州: 浙江科学技术出版社, 2003 |
[2] | ( Feng Kang, Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems. Hangzhou: Zhejiang Science and Technology Press, 2003 (in Chinese)) |
[3] | Feng K, Qin MZ. Symplectic Geometric Algorithms for Hamiltonian Systems. Hangzhou: Zhejiang Publishing United Group, Zhejiang Science and Technology Publishing House, and Berlin Heidelberg: Springer-Verlag, 2010 |
[4] | 郑丹丹, 罗建军, 张仁勇 等. 基于混合Lie算子辛算法的不变流形计算. 力学学报, 2017,49(5):1126-1134 |
[4] | ( Zheng Dandan, Luo Jianjun, Zhang Renyong , et al. Computation of invariant manifold based on symplectic algorithm of mixed Lie operator. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1126-1134 (in Chinese)) |
[5] | 张高超 . 基于空间滤波技术的高稳定度辛算法研究. [硕士论文]. 合肥: 安徽大学, 2017 |
[5] | ( Zhang Gaochao . Research on high stability symplectic algorithm based on spatial filtering technique. [Master Thesis]. Hefei: Anhui University, 2017 (in Chinese)) |
[6] | Ruth RD . A canonical integration technique. IEEE Transactions on Nuclear Science, 1983, NS- 30(4):2669-2671 |
[7] | Feng K. On difference schemes and symplectic geometry//Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations. Beijing: Science Press, 1984: 42-58 |
[8] | Sanz-Serna JM . Runge-Kutta schemes for Hamiltonian systems. BIT Numerical Mathematics, 1988,28(4):877-883 |
[9] | Lasagni FM . Canonical Runge-Kutta methods. Zeitschrift für Angewandte Mathematik und Physik, 1988,39(6):952-953 |
[10] | Suris YB . On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems//Filipplv SS ed. Numerical Solution of Ordinary Differential Equations. Moscow: Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, 1988: 148-160 |
[11] | Sun G . Symplectic partitioned Runge-Kutta methods. Journal of Computational Mathematics, 1993,11(4):365-372 |
[12] | Bridges TJ . Multisymplectic structures and wave propagation. Mathematical Proceedings of Cambridge Philosophical Society, 1997,121(1):147-190 |
[13] | Reich S . Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. Journal of Computational Physics, 2000,157(2):473-499 |
[14] | Marsden JE, Patrick GW, Shkoller S . Multisymplectic geometry, variational integrators, and nonlinear PDEs. Computer Physics Communications, 1998,199(2):351-395 |
[15] | Hairer E, Lubich C, Wanner G . Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Second Edition. Springer Series in Computational Mathematics, 31, Berlin: Springer-Verlag, 2006 |
[16] | Sun ZJ . A meshless symplectic method for two-dimensional nonlinear Schrodinger equations based on radial basis function approximation. Engineering Analysis with Boundary Elements, 2019,104:1-7 |
[17] | Tang WS, Sun YJ, Zhang JJ . High order symplectic integrators based on continuous-stage Runge-Kutta-Nystrom methods. Applied Mathematics and Computation, 2019,361:670-679 |
[18] | 刘海波, 姜潮, 郑静 等. 含概率与区间混合不确定性的系统可靠性分析方法. 力学学报, 2017,49(2):456-466 |
[18] | ( Liu Haibo, Jiang Chao, Zheng Jing , et al. A system reliability analysis method for structures with probability and interval mixed uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):456-466 (in Chinese)) |
[19] | Wang L, Xiong C, Wang XJ , et al. A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis. Applied Mathematical Modelling, 2018,59:680-695 |
[20] | Xiong C, Wang L, Liu GH , et al. An iterative dimension-by-dimension method for structural interval response prediction with multidimensional uncertain variables. Aerospace Science and Technology, 2019,86:572-581 |
[21] | 唐冶, 王涛, 丁千 . 主动控制压电旋转悬臂梁的参数振动稳定性分析. 力学学报, 2019,51(6):1872-1881 |
[21] | ( Tang Ye, Wang Tao, Ding Qian . Stability analysis on parametric vibration of piezoelectric rotating cantilever beam with active control. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1872-1881 (in Chinese)) |
[22] | Moens D, Vandepitte D . Recent advances in non-probabilistic approaches for non-deterministic dynamic finite element analysis. Archives of Computational Methods in Engineering, 2006,13(3):389-464 |
[23] | 邱志平, 王晓军, 许孟辉 . 工程结构不确定优化设计技术. 北京: 科学出版社, 2013 |
[23] | ( Qiu Zhiping, Wang Xiaojun, Xu Menghui. Uncertainty-based Design and Optimization of Structures in Engineering. Beijing: Science Press, 2013 (in Chinese)) |
[24] | Milstein GN, Repin YM, Tretyakov MV . Symplectic integration of Hamiltonian systems with additive noise. SIAM Journal on Numerical Analysis, 2002,39(6):2066-2088 |
[25] | 王丽瑾 . 随机哈密顿系统的变分积分子与生成函数. [博士论文]. 北京: 中国科学院研究生院, 2007 |
[25] | ( Wang Lijin . Variational integrators and generating functions for stochastic Hamiltonian systems. [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences, 2007 (in Chinese)) |
[26] | Bou-Rabee N, Owhadi H . Stochastic variational integrators. IMA Journal of Numerical Analysis, 2009,29(2):421-443 |
[27] | Han MG, Ma Q, Ding XH . High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise. Applied Mathematics and Computation, 2019,346:575-593 |
[28] | Li XY, Zhang CP, Ma Q , et al. Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems. Taiwanese Journal of Mathematics, 2019,23(3):703-725 |
[29] | 朱位秋 . 随机激励的可积与不可积Hamilton系统的精确平稳解. 科学通报, 1995,40(21):1942-1946 |
[29] | ( Zhu Weiqiu . Exact stationary solutions of integrable and non-integrable Hamiltonian systems with random excitations. Chinese Science Bulletin, 1995,40(21):1942-1946 (in Chinese)) |
[30] | 朱位秋 . 非线性随机动力学与控制-Hamilton理论体系框架. 北京: 科学出版社, 2003 |
[30] | ( Zhu Weiqiu. Nonlinear Stochastic Dynamics and Control-Hamiltonian Theoretical Framework. Beijing: Science Press, 2003 (in Chinese)) |
[31] | Luo E, Huang WJ, Zhang HX . Unconventional Hamilton-type variational principle in phase space and symplectic algorithm. Science in China (Series G), 2003,46(3):248-258 |
[32] | 郭静, 邢誉峰 . 结构动力学方程的辛RK方法. 应用数学和力学, 2014, 35(1):12-21 |
[32] | ( Guo Jing, Xing Yufeng . Symplectic Runge-Kutta method for structural dynamics. Applied Mathematics and Mechanics, 2014, 35(1):12-21 (in Chinese)) |
[33] | Xing YF, Zhang HM, Wang ZK . Highly precise time integration method for linear structural dynamic analysis. International Journal for Numerical Methods in Engineering, 2018,116(8):505-529 |
[34] | 高强, 张洪武, 张亮 等. 拉压刚度不同桁架的动力参变量变分原理和保辛算法. 振动与冲击, 2013,32(4):184-189 |
[34] | ( Gao Qiang, Zhang Hongwu, Zhang Liang , et al. Dynamic parametric variational principle and symplectic algorithm for trusses with different tensional and compressional stiffnesses. Journal of Vibration and Shock, 2013,32(4):184-189 (in Chinese)) |
[35] | Li WH, Sun HY . A symplectic method for dynamic response of structures. Applied Mechanics and Materials, 2015,724:7-11 |
[36] | Yang DD, Huang JF, Zhao WJ . A quasi-dynamic model and a symplectic algorithm of super slender Kirchhoff rod. International Journal of Modeling Simulation and Scientific Computing, 2017,8(3):1750037 |
[37] | 杨涛 . 梁振动方程的保结构算法. [硕士论文]. 南京: 南京师范大学, 2015 |
[37] | ( Yang Tao . Structure-preserving algorithms for vibration equation of beams. [Master Thesis]. Nanjing: Nanjing Normal University, 2015 (in Chinese)) |
[38] | 秦于越, 邓子辰, 胡伟鹏 . 冲击荷载作用下中心对称薄圆板振动的多辛分析. 西北工业大学学报, 2013,31(6):931-934 |
[38] | ( Qin Yuyue, Deng Zichen, Hu Weipeng . Multi-symplectic analysis of vibration of centrosymmetric thin circular plate under impact load. Journal of Northwestern Polytechnical University, 2013,31(6):931-934 (in Chinese)) |
[39] | 刘雪梅, 邓子辰, 胡伟鹏 . 饱和多孔弹性杆流固耦合动力响应的保结构算法. 应用数学和力学, 2016,37(10):1050-1059 |
[39] | ( Liu Xuemei, Deng Zichen, Hu Weipeng . Structure-preserving algorithm for fluid-solid coupling dynamic responses of saturated poroelastic rods. Applied Mathematics and Mechanics, 2016,37(10):1050-1059 (in Chinese)) |