EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Morris-Lecar系统中通道噪声诱导的自发性动作电位研究

李扬 刘先斌

李扬, 刘先斌. Morris-Lecar系统中通道噪声诱导的自发性动作电位研究[J]. 力学学报, 2020, 52(1): 184-195. doi: 10.6052/0459-1879-19-294
引用本文: 李扬, 刘先斌. Morris-Lecar系统中通道噪声诱导的自发性动作电位研究[J]. 力学学报, 2020, 52(1): 184-195. doi: 10.6052/0459-1879-19-294
Yang Li, Xianbin Liu. RESEARCH ON SPONTANEOUS ACTION POTENTIAL INDUCED BY CHANNEL NOISE IN MORRIS-LECAR SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 184-195. doi: 10.6052/0459-1879-19-294
Citation: Yang Li, Xianbin Liu. RESEARCH ON SPONTANEOUS ACTION POTENTIAL INDUCED BY CHANNEL NOISE IN MORRIS-LECAR SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 184-195. doi: 10.6052/0459-1879-19-294

Morris-Lecar系统中通道噪声诱导的自发性动作电位研究

doi: 10.6052/0459-1879-19-294
基金项目: 1) 国家自然科学基金项目(11472126);国家自然科学基金项目(11232007);机械结构力学及控制国家重点实验室自主研究项目(MCMS-I-19G01);江苏省高等学校重点学科建设项目(PAPD)
详细信息
    通讯作者:

    刘先斌

  • 中图分类号: O322

RESEARCH ON SPONTANEOUS ACTION POTENTIAL INDUCED BY CHANNEL NOISE IN MORRIS-LECAR SYSTEM

  • 摘要: 在生物物理学中, 越来越多的现象是由于分段确定性的动力系统与连续时间马氏过程之间的耦合作用而产生的. 因为这种耦合性, 相关的数学模型更适合取为随机混合系统而不是扩散过程(基于It?随机微分方程). 本文从理论上和数值上研究了在弱噪声条件下无鞍点状态的随机混合Morris-Lecar系统中, 由通道噪声诱导的自发性放电现象. 一个动作电位的初始阶段可视为噪声诱导的逃逸事件, 其最优路径和拟势可由辅助Hamilton系统给出. 由于系统不存在鞍点, 因此可选择虚拟分界线(ghost separatrix)为阈值, 研究噪声诱导的自静息态的逃逸事件. 通过计算在阈值处的拟势, 便可发现其值有一个明显的最小值, 其作用类似于鞍点. 通过改进的Monte Carlo模拟方法, 计算了历程概率分布, 其结果对初始阶段和兴奋阶段的理论解均给出了验证. 此外, 基于前人将拟势等高线作为阈值的另一种选择, 我们对两种阈值取法的优劣性进行了比较. 最后, 本文研究了钠离子和钾离子通道噪声的不同组合对最优路径和拟势的影响. 结果表明: 钾离子通道噪声在自发性放电过程中起主导作用, 且两种噪声强度存在一个最优比例能使总的噪声强度达到最小.

     

  • [1] Newby JM . Isolating intrinsic noise sources in a stochastic genetic switch. Physical Biology, 2012,9(2):026002
    [2] Assaf M, Roberts E, Luthey-Schulten Z . Determining the stability of genetic switches: Explicitly accounting for mRNA noise. Physical Review Letter, 2011,106(24):248102
    [3] Friedman A, Craciun G . A model of intracellular transport of particles in an axon. Journal of Mathematical Biology, 2005,51(2):217-246
    [4] Newby JM, Bressloff PC . Quasi-steady state reduction of molecular motor-based models of directed intermittent search. Bulletin of Mathematical Biology, 2010,72(7):1840-1866
    [5] Bressloff PC . Stochastic switching in biology: from genotype to phenotype. Journal of Physics A: Mathematical and Theoretical, 2017,50(13):133001
    [6] Bressloff PC . Path-integral methods for analyzing the effects of fluctuations in stochastic hybrid neural networks. The Journal of Mathematical Neuroscience, 2015,5(1):1-33
    [7] Bressloff PC . Metastable states and quasicycles in a stochastic Wilson-Cowan model of neuronal population dynamics. Physical Review E, 2010,82(5):051903
    [8] Bressloff PC, Newby JM . Metastability in a stochastic neural network modeled as a velocity jump markov process. SIAM Journal on Applied Dynamical Systems, 2013,12(3):1394-1435
    [9] Bressloff PC, Newby JM . Path integrals and large deviations in stochastic hybrid systems. Physical Review E, 2014,89(4):042701
    [10] Newby JM, Bressloff PC, Keener JP . Breakdown of fast-slow analysis in an excitable system with channel noise. Physical Review Letters, 2013,111(12):128101
    [11] Newby JM . Spontaneous excitability in the Morris-Lecar model with ion channel noise. SIAM Journal on Applied Dynamical Systems, 2014,13(4):1756-1791
    [12] Brooks HA, Bressloff PC . Quasicycles in the stochastic hybrid Morris-Lecar neural model. Physical Review E, 2015,92(1):012704
    [13] Dykman MI, Mori E, Ross J , et al. Large fluctuations and optimal paths in chemical kinetics. Journal of Chemical Physics, 1994,100(8):5735-5750
    [14] Li Y, Liu X . Noise induced escape in one-population and two-population stochastic neural networks with internal states. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2019,29(2):023137
    [15] Newby JM . Asymptotic and numerical methods for metastable events in stochastic gene networks. Eprint Arxiv, 2014
    [16] Izhikevich EM . Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 2000,10(6):1171-1266
    [17] Freidlin MI, Wentzell AD . Random Perturbations of Dynamical Systems. 3rd Ed. Berlin: Springer-Verlag, 2012
    [18] Maier RS, Stein DL . Transition-rate theory for nongradient drift fields. Physical Review Letters, 1992,69(26):3691-3695
    [19] 孔琛, 刘先斌 . 受周期和白噪声激励的分段线性系统的吸引域与离出问题研究. 力学学报, 2014,46(3):447-456
    [19] ( Kong Chen, Liu Xianbin . Research for attracting region and exit problem of a piecewise linear system under periodic and white noise excitations. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(3):447-456 (in Chinese))
    [20] Smelyanskiy VN, Dykman MI, Maier RS . Topological features of large fluctuations to the interior of a limit cycle. Physical Review E: Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1997,55(3):2369-2391
    [21] Chen Z, Liu X . Noise induced transitions and topological study of a periodically driven system. Communications in Nonlinear Science and Numerical Simulation, 2017,48:454-461
    [22] Chen Z, Li Y, Liu X . Noise induced escape from a nonhyperbolic chaotic attractor of a periodically driven nonlinear oscillator. Chaos, 2016,26(6):063112
    [23] Luchinsky DG, Beri S, Mannella R , et al. Optimal fluctuations and the control of chaos. International Journal of Bifurcation and Chaos, 2002,12(3):583-604
    [24] Beri S, Mannella R, Luchinsky DG , et al. Solution of the boundary value problem for optimal escape in continuous stochastic systems and maps. Physical Review E, 2005,72(3):036131
    [25] Chen Z, Zhu JJ, Liu XB . Crossing the quasi-threshold manifold of a noise-driven excitable system. Proceedings of The Royal Society: A Mathematical Physical and Engineering Sciences, 2017,473(2201):20170058
    [26] Khovanov IA, Polovinkin AV, Luchinsky DG , et al. Noise-induced escape in an excitable system. Physical Review E, 2013,87(3):032116
    [27] Chow CC, White JA . Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 1996,71(6):3013-3021
    [28] Keener JP, Newby JM . Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Physical Review E, 2011,84(1):011918
    [29] Heymann M, Vanden-Eijnden E . The geometric minimum action method: A least action principle on the space of curves. Communications on Pure and Applied Mathematics, 2008,61(8):1052-1117
    [30] Cameron MK . Finding the quasipotential for nongradient SDEs. Physica D: Nonlinear Phenomena, 2012,241(18):1532-1550
    [31] Hodgkin AL, Huxley AF . A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 1952,117(4):500-544
    [32] Liu C, Liu X, Liu S . Bifurcation analysis of a Morris-Lecar neuron model. Biological Cybernetics, 2014,108:75-84
    [33] Krupa M, Szmolyan P . Extending geometric singular perturbation theory to nonhyperbolic points--fold and canard points in two dimensions. SIAM Journal on Mathematical Analysis, 2001,33(2):286-314
    [34] Chen Z, Liu X . Patterns and singular features of extreme fluctuational paths of a periodically driven system. Physics Letters A, 2016,380:1953-1958
    [35] Kong C, Chen Z, Liu X . Singular features of exit problem and fluctuation phenomenon of a periodically and stochastically driven nonlinear system. 2019 (under review)
    [36] Gillespie DT . Exact Stochastic simulation of coupled chemical-reactions. The Journal of Physical Chemistry, 1977,81:2340-2361
    [37] Dykman MI, Mcclintock PVE, Smelyanski VN , et al. Optimal paths and the prehistory problem for large fluctuations in noise-driven systems. Physical Review Letters, 1992,68(18):2718-2721
    [38] Dannenberg PH, Neu JC, Teitsworth SW . Steering most probable escape paths by varying relative noise intensities. Physical Review Letters, 2014,113(2):020601
  • 加载中
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  163
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-23
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回