EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同心排出量下主动脉瓣血流动力学的PIV实验研究

刘赵淼 杨刚 逄燕 钟希祥 李梦麒 薛贺波 齐轶鹏 史艺

刘赵淼, 杨刚, 逄燕, 钟希祥, 李梦麒, 薛贺波, 齐轶鹏, 史艺. 不同心排出量下主动脉瓣血流动力学的PIV实验研究[J]. 力学学报, 2019, 51(6): 1918-1926. doi: 10.6052/0459-1879-19-231
引用本文: 刘赵淼, 杨刚, 逄燕, 钟希祥, 李梦麒, 薛贺波, 齐轶鹏, 史艺. 不同心排出量下主动脉瓣血流动力学的PIV实验研究[J]. 力学学报, 2019, 51(6): 1918-1926. doi: 10.6052/0459-1879-19-231
Liu Zhaomiao, Yang Gang, Pang Yan, Zhong Xixiang, Li Mengqi, Xue Hebo, Qi Yipeng, Shi Yi. EXPERIMENTAL STUDY ON HEMODYNAMICS OF AORTIC VALVE UNDER VARIED CARDIAC OUTPUT USING PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1918-1926. doi: 10.6052/0459-1879-19-231
Citation: Liu Zhaomiao, Yang Gang, Pang Yan, Zhong Xixiang, Li Mengqi, Xue Hebo, Qi Yipeng, Shi Yi. EXPERIMENTAL STUDY ON HEMODYNAMICS OF AORTIC VALVE UNDER VARIED CARDIAC OUTPUT USING PIV[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1918-1926. doi: 10.6052/0459-1879-19-231

不同心排出量下主动脉瓣血流动力学的PIV实验研究

doi: 10.6052/0459-1879-19-231
基金项目: 1) 北京市教委科技计划重点项目资助(KZ201710005006)
详细信息
    通讯作者:

    刘赵淼

  • 中图分类号: O368

EXPERIMENTAL STUDY ON HEMODYNAMICS OF AORTIC VALVE UNDER VARIED CARDIAC OUTPUT USING PIV

  • 摘要: 主动脉瓣发生病变时导致心排出量(cardiac output, CO)减少,而心排出量减少与主动脉瓣血流动力学耦合作用, 引发瓣膜继发性疾病.本文基于医学影像数据三维重构带有冠状动脉的主动脉根部,制备高度光滑和透明的主动脉根部实验模型, 构建体外脉动循环模拟系统,利用粒子图像测速技术(particle image velocimetry,PIV)研究冠状动脉存在时心排出量对主动脉瓣速度分布、黏性剪应力(viscous shear stress, VSS)和雷诺剪应力(Reynolds shear stress, RSS)等血流动力学的影响.研究结果表明: 冠状动脉的存在改变了主动脉窦中的涡旋运动和涡度,冠状动脉存在时流体经由冠状动脉流出, 主动脉窦中的涡旋运动逐渐消失,涡度较早开始减小. 峰值期, 中心对称流动两侧区域存在正、负高黏性剪切区域,存在冠状动脉一侧的升主动脉下游存在高雷诺剪应力区域.心排出量显著影响主动脉瓣的速度分布、VSS和RSS等血液流动和受力状况.随着心排出量增大, 冠状动脉存在时峰值期的最大速度、VSS和RSS增大, 即$CO=2.1$, 2.8, 3.5和4.2 l/min时, 最大速度分别为0.98, 1.13, 1.21和1.37 m/s, 最大VSS分别为0.87, 0.95, 0.96和1.02 N/m$^{2}$, 最大RSS分别为103.76, 116.25, 138.68和146.55 N/m$^{2}$. 心排出量较低时,主动脉瓣较低的跨瓣流动速度和黏性剪应力易导致血栓形成,研究结果可为主动脉瓣置换术提供理论参考.

     

  • 1 刘晨, 杨理践, 张兴 . 人工生物瓣膜血流动力学行为的有限元分析. 材料研究学报, 2018,32(1):51-57
    1 ( Liu Chen, Yang Lijian, Zhang Xing, Finite element analysis for hemodynamic behavior of bioprosthetic heart valves. Chinese Journal of Materials Research, 2018,32(1):51-57 (in Chinese))
    2 Morganti S, Brambilla N, Petronio AS, et al. Prediction of patient-specific post-operative outcomes of TAVI procedure: The impact of the positioning strategy on valve performance. Journal of Biomechanics, 2016,49(12):2513-2519
    3 刘镕珲, 金昌, 冯文韬 等. 不同钙化模式对经导管主动脉瓣膜植入效果影响的数值模拟研究. 医用生物力学, 2017(6):506-512
    3 ( Liu Ronghui, Jin Chang, Feng Wentao, et al. The impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation:A numerical simulation study. Journal of Medical Biomechanics, 2017(6):506-512 (in Chinese))
    4 Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease. The Journal of Thoracic and Cardiovascular Surgery, 2014,148(1):e1-e132
    5 刘桂梅, 潘友联, 付文宇 等. 主动脉瓣部分关闭和完全开放的有限元分析. 医用生物力学, 2018(2):95-100
    5 ( Liu Guimei, Pan Youlian, Fu Wenyu, et al. Finite element analysis on partially closed and fully opened aortic valve. Journal of Medical Biomechanics, 2018(2):95-100 (in Chinese))
    6 Carabello BA, Paulus WJ. Aortic stenosis. Lancet, 2009,373(9667):956-966
    7 Marx P, Kowalczyk W, Demircioglu A, et al. The fluid dynamical performance of the Carpentier-Edwards PERIMOUNT magna ease prosthesis. BioMed Research International, 2018(6):1-9
    8 Gülan U, Saguner AM, Akdis D, et al. Hemodynamic changes in the right ventricle induced by variations of cardiac output: A possible mechanism for arrhythmia occurrence in the outflow tract. Scientific Reports, 2019,9(1):100
    9 顾兆勇, 刘桂梅, 潘友联 等. 心室流腔角度对主动脉瓣影响的脉动流实验研究. 北京生物医学工程, 2018,37(2):144-150
    9 ( Gu Zhao-yong, Liu Guimei, Pan Youlian, et al. Experimental study of the influence of the angle of ventricular flow chamber on the pulsatile flow of aortic valve. Beijing Biomedical Engineering, 2018,37(2):144-150 (in Chinese))
    10 Zhang R, Zhang Y. An experimental study of pulsatile flow in a compliant aortic root model under varied cardiac outputs. Fluids, 2018,3(4):71
    11 Yap CH, Saikrishnan N, Tamilselvan G, et al. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomechanics and Modeling in Mechanobiology, 2012,11(1-2):171-182
    12 Vahidkhah K, Abbasi M, Barakat M, et al. Effect of reduced cardiac output on blood stasis on transcatheter aortic valve leaflets: Implications for valve thrombosis. EuroIntervention: Journal of EuroPCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2017,13(7):811-819
    13 Seaman C, Akingba AG, Sucosky P. Steady flow hemodynamic and energy loss measurements in normal and simulated calcified tricuspid and bicuspid aortic valves. Journal of Biomechanical Engineering, 2014,136(4):041001
    14 Querzoli G, Fortini S, Espa S, et al. A laboratory model of the aortic root flow including the coronary arteries. Experiments in Fluids, 2016,57(8):134
    15 Moore BL, Dasi LP. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Annals of Biomedical Engineering, 2015,43(9):2231-2241
    16 Liu ZM, Zhao SW, Li Y, et al. Influence of coronary bifurcation angle on atherosclerosis. Acta Mechanica Sinica, 2019,35:1-10
    17 刘赵淼, 南斯琦, 史艺 . 中等严重程度冠状动脉病变模型的血流动力学参数分析. 力学学报, 2016,47(6):1058-1064
    17 ( Liu Zhaomiao, Nan Siqi, Shi Yi, Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model. Chinese Journal of Theoretical and Applied Mechanics, 2016,47(6):1058-1064 (in Chinese))
    18 王彦植, 陈方, 刘洪 等. 高速流动PIV示踪粒子跟随响应特性实验研究. 实验流体力学, 2018,32(3):97-102
    18 ( Wang Yanzhi, Chen Fang, Liu Hong, et al. Experimental investigation on response characteristics of PIV tracer particles in high spaed flow. Journal of Experiments in Fluid Mechanics, 2018,32(3):97-102 (in Chinese))
    19 高天达, 孙姣, 范赢 等. 基于 PIV 技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110
    19 ( Gao Tianda, Sun Jiao, Fan Ying, et al. PIV experimental investigation on the behavior of particles in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
    20 Yap CH, Saikrishnan N, Tamilselvan G, et al. Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Journal of Biomechanical Engineering, 2011,133(6):061007
    21 申峰, 刘赵淼 . 显微粒子图像测速技术-微流场可视化测速技术及应用综述. 机械工程学报, 2012,48(4):155-168
    21 ( Shen Feng, Liu Zhaomiao, Review on the micro-particle image velocimetry technique and applications. Journal of Mechanical Engineering, 2012,48(4):155-168 (in Chinese))
    22 彭宁宁, 刘志丰, 王连泽 . 亚微米颗粒在汇作用下运动机理的实验研究. 力学学报, 2017,49(2):289-298
    22 ( Peng Ningning, Liu Zhifeng, Wang Lianze, Experimental study of submicron particles' motion in the effect of particle-sink. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):289-298 (in Chinese))
    23 崔光耀, 潘翀, 高琪 等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017,49(6):1201-1212
    23 ( Cui Guangyao, Pan Chong, Gao Qi, et al. Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1201-1212 (in Chinese))
    24 Raghav V, Sastry S, Saikrishnan N. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): Recommendations for best practices. Cardiovascular Engineering and Technology, 2018,9(3):273-287
    25 Heitkemper M, Hatoum H, Dasi LP. In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve. Journal of the Mechanical Behavior of Biomedical Materials, 2019,98:163-171
    26 Büsen M, Arenz C, Neidlin M, et al. Development of an In Vitro PIV setup for preliminary investigation of the effects of aortic compliance on flow patterns and hemodynamics. Cardiovascular Engineering and Technology, 2017,8(3):368-377.
    27 Gulan U, Luthi B, Holzner M, et al. Experimental investigation of the influence of the aortic stiffness on hemodynamics in the ascending aorta. Biomedical & Health Informatics IEEE Journal of Biomedical and Health Informatics, 2014,18(6):1775-1780
    28 Keshavarz-Motamed Z, Garcia J, Gaillard E, et al. Effect of coarctation of the aorta and bicuspid aortic valve on flow dynamics and turbulence in the aorta using particle image velocimetry. Experiments in Fluids, 2014,55(3):1696
    29 Hatoum H, Dollery J, Lilly SM, et al. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Annals of Biomedical Engineering, 2019,47(1):75-84
    30 Gunning PS, Saikrishnan N, McNamara LM, et al. An in vitro evaluation of the impact of eccentric deployment on transcatheter aortic valve hemodynamics. Annals of Biomedical Engineering, 2014,42(6):1195-1206
    31 Saikrishnan N, Yap CH, Milligan NC, et al. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Annals of Biomedical Engineering, 2012,40(8):1760-1775
    32 Falahatpisheh A, Kheradvar A. High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation. European Journal of Mechanics - B/Fluids, 2012,35(none):2-8
    33 Dasi LP, Hatoum H, Kheradvar A, et al. On the mechanics of transcatheter aortic valve replacement. Annals of Biomedical Engineering, 2017,45(2):310-331
    34 Ge L, Dasi LP, Sotiropoulos F, et al. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Annals of Biomedical Engineering, 2008,36(2):276-297
    35 Vahidkhah K, Cordasco D, Abbasi M, et al. Flow-induced damage to blood cells in aortic valve stenosis. Annals of Biomedical Engineering, 2016,44(9):2724-2736
    36 Barakat M, Dvir D, Azadani AN. Fluid dynamic characterization of transcatheter aortic valves using particle image velocimetry. Artificial Organs, 2018,42(11):E357-E368
    37 杜健航, 王梁, 伍贵富 等. 动脉粥样硬化晚期斑块局部应力的流固耦合分析及体外反搏作用干预机制的研究. 力学学报, 2018,50(1):138-146
    37 ( Du Jianhang, Wang Liang, Wu Guifu, et al. Fluid-structure interaction analysis of local stresses in atherosclerotic plaque and the intervention of enhanced external counterpulsation treatment. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):138-146 (in Chinese))
    38 唐元梁, 贺缨 . 内皮调节对小动脉管腔运动影响的模型分析. 力学学报, 2017,49(1):189-197
    38 ( Tang Yuanliang, He Ying, Model analysis of endothelium-dependent vasomotion of small artery. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(1):189-197 (in Chinese))
    39 Hatoum H, Yousefi A, Lilly S, et al. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. The Journal of Thoracic and Cardiovascular Surgery, 2018,156(5):1837-1848
    40 Leverett LB, Hellums JD, Alfrey CP, et al. Red blood cell damage by shear stress. Biophysical Journal, 1972,12(3):257-273
  • 加载中
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  209
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-23
  • 刊出日期:  2019-11-18

目录

    /

    返回文章
    返回