EI、Scopus 收录
中文核心期刊

风速不确定性对风力机气动力影响量化研究

唐新姿, 王效禹, 袁可人, 彭锐涛

唐新姿, 王效禹, 袁可人, 彭锐涛. 风速不确定性对风力机气动力影响量化研究[J]. 力学学报, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214
引用本文: 唐新姿, 王效禹, 袁可人, 彭锐涛. 风速不确定性对风力机气动力影响量化研究[J]. 力学学报, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214
Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214
Citation: Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. DOI: 10.6052/0459-1879-19-214
唐新姿, 王效禹, 袁可人, 彭锐涛. 风速不确定性对风力机气动力影响量化研究[J]. 力学学报, 2020, 52(1): 51-59. CSTR: 32045.14.0459-1879-19-214
引用本文: 唐新姿, 王效禹, 袁可人, 彭锐涛. 风速不确定性对风力机气动力影响量化研究[J]. 力学学报, 2020, 52(1): 51-59. CSTR: 32045.14.0459-1879-19-214
Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. CSTR: 32045.14.0459-1879-19-214
Citation: Tang Xinzi, Wang Xiaoyu, Yuan Keren, Peng Ruitao. QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(1): 51-59. CSTR: 32045.14.0459-1879-19-214

风速不确定性对风力机气动力影响量化研究

基金项目: 1) 湖南省教育厅(19B539);湖南省教育厅(18A077);国家自然科学基金(51305377);国家自然科学基金(51575466);国家自然科学基金(51975504);湖南省自然科学基金(2018JJ4082)
详细信息
    通讯作者:

    唐新姿

  • 中图分类号: TB12

QUANTITATION STUDY OF INFLUENCE OF WIND SPEED UNCERTAINTY ON AERODYNAMIC FORCES OF WIND TURBINE

  • 摘要: 风力机气动力学一直是国内外研究的热点课题之一.目前相关研究大都是基于确定性工况条件, 但因风力机常年工作在自然来流复杂环境,风速随机波动致使风电系统呈现不确定性, 对电网稳定性带来巨大挑战,因此进行不确定风速条件下风力机气动力学研究具有重要意义.为揭示不确定性对风力机流场影响机理并明确其对气动力的影响程度,本文提出一种风力机不确定空气动力学分析方法,基于修正叶素动量理论和非嵌入式概率配置点法,建立水平轴风力机不确定性空气动力学响应模型; 以NREL Phase VI S809风力机叶轮为研究对象, 基于该模型提取风力机输出随机响应信息,量化不确定风速对风力机风轮功率、推力、叶片挥舞弯矩和摆振弯矩的影响程度;通过分析流动诱导因子不确定性在叶片展长方向上的分布规律,揭示不确定因素在风力机本体上的传播机制,为风电系统设计及应用提供理论依据和重要参考. 结果表明,风速波动对风力机功率和气动力影响显著,高斯风速标准差由0.05倍增大至0.15倍均值,功率和推力最大波动幅度分别由13.44%和8.00%增大至35.11%和22.02%,叶片挥舞弯矩和摆振弯矩最大波动幅度分别由7.20%和12.84%增大至19.90%和33.49%.来流风速不确定性导致叶片根部位置气流明显波动,可以考虑在该部分采取流动控制措施降低叶片对风速不确定性的敏感程度.
    Abstract: Wind turbine aerodynamics has been one of the hottest research topics at home and abroad. At present, most relevant researches are based on deterministic working conditions. However, since wind turbine works in the complex environment of natural flow in the atmosphere all the year round, wind speed fluctuates and changes randomly, the power output of wind turbine is uncertain. The uncertainty of wind power system brings great challenges to the stability of national grid. It is important to study the aerodynamics of wind turbine under uncertain wind speed conditions. In order to reveal the influence mechanism of uncertainty on wind turbine flow field and to determine its influence on loads, this paper proposes an uncertain aerodynamic analysis method for wind turbine. Based on the blade element momentum theory and the non-intrusive probabilistic collocation, the uncertainty aerodynamic response model of horizontal axis wind turbine was established. Taking the NREL Phase VI S809 wind turbine rotor as the research object, the random output response information of wind turbine was extracted, and the influence of uncertain wind speed on turbine power, thrust, blade flapwise bending moment and edgewise moment of wind turbine were quantified. Based on the uncertain analysis of the flow induction factors in the length direction of the blade, the uncertainty propagation mechanism in the wind turbine field was revealed, which provides a reference for the wind power system design and application. Results show that, the wind speed fluctuation has a significant influence on the wind turbine power and aerodynamic forces. The standard deviation of random Gaussian wind speed range increases from 0.05 to 0.15 times average speed, the maximum fluctuation ranges of power and thrust increase from 13.34% and 8.00% to 35.11% and 22.02%, respectively; the maximum fluctuation ranges of blade flapwise bending moment and edgewise moment increase from 7.20% and 12.84% to 19.90% and 33.49% respectively. The uncertainty of the incoming wind speed leads to the obvious fluctuation of the local flow at the blade root sections, which indicates that flow control techniques can be applied in this part of the blade to reduce the sensitivity to the uncertainty of wind speed.
  • [1] 何佳, 肖杨, 邓友汗 等. 基于BEM的风力机叶片形变及气动性能. 中南大学学报(自然科学版), 2017,48(9):2513-2519
    [1] ( He Jia, Xiao Yang, Deng Youhan , et al. Aeroelastic deformation and aerodynamic performance of wind turbine blades based on BEM. Journal of Central South University (Science and Technology), 2017,48(9):2513-2519 (in Chinese))
    [2] 李德源, 汪显能, 莫文威 等. 非定常条件下风力机柔性叶片气弹耦合分析. 太阳能学报, 2017,38(4):966-975
    [2] ( Li Deyuan, Wang Xianneng, Mo Wenwei , et al. Aeroelastic coupling analysis of flexible blades of wind turbine under unsteady conditions. Acta Energiae Solaris Sinica, 2017,38(4):966-975 (in Chinese))
    [3] Kabir IFSA, Ng EYK . Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect. Energy, 2017,120:518-536
    [4] Esfahanian V, Pour AS, Harsini I , et al. Numerical analysis of flow field around NREL Phase II wind turbine by a hybrid CFD/BEM method. Journal of Wind Engineering and Industrial Aerodynamics, 2013,120:29-36
    [5] Arramach J, Boutammachate N, Abdelfattah B . Prediction of the wind turbine performance by using a modified BEM theory with an advanced brake state model. Energy Procedia, 2017,118:149-157
    [6] Rajan A, Ponta FL . Aeroelastic analysis of the 3-dimensional interference patterns of wind-turbine rotors: The 3-D DRD-BEM model. Renewable Energy Focus, 2018,26:22-39
    [7] Yang H, Shen WZ, Xu HR , et al. Prediction of the wind turbine performance by using BEM with airfoil data extracted from CFD. Renewable Energy, 2014,70:107-115
    [8] Pinto RLUDf, Gon?alves BPF . A revised theoretical analysis of aerodynamic optimization ofhorizontal-axis wind turbines based on BEM theory. Renewable Energy, 2017,105:625-636
    [9] Kavari G, Tahani M, Mirhosseini M . Wind shear effect on aerodynamic performance and energy production of horizontal axis wind turbines with developing blade element momentum theory. Journal of Cleaner Production, 2019,219:368-376
    [10] Guo SJ, Chen JH, Chiu CH . Fuzzy duration forecast model for wind turbine construction project subject to the impact of wind uncertainty. Automation in Construction, 2017,81:401-410
    [11] 王多睿, 王维庆, 蔡鑫 . 基于NMPC-PID的风力机独立变桨距控制策略研究. 太阳能学报, 2017,38(9):2520-2526
    [11] ( Wang Duorui, Wang Weiqing, Cai Xin . Research on control strategy of individual pitch control of wind turbine base on NMPC-PID. Acta Energiae Solaris Sinica, 2017,38(9):2520-2526 (in Chinese))
    [12] 郝文星, 叶舟, 李春 等. 基于柔性尾缘襟翼风力机翼型性能主动控制研究. 太阳能学报, 2017,38(5):1339-1345
    [12] ( Hao Wenxing, Ye Zhou, Li Chun , et al. Study of active control for wind turbine airfoil performance base on deformable trailing edge flap. Acta Energiae Solaris Sinica, 2017,38(5):1339-1345 (in Chinese))
    [13] 卢奭瑄, 付思, 佟维妍 . 风电机组变桨鲁棒控制. 沈阳工业大学学报, 2018,40(6):627-631
    [13] ( Lu Shixuan, Fu Xi, Tong Weiyan . Robust control for variable pitch of wind turbines. Journal of Shenyang University of Technology, 2018,40(6):627-631 (in Chinese))
    [14] 杨阳, 李春, 叶柯华 等. 基于HHT方法的非稳定工况风力机结构动态响应时频特性分析. 振动与冲击, 2016,35(21):22-28
    [14] ( Yang Yang, Li Chun, Ye Kehua , et al. Structural dynamic response characteristics of a wind turbine in time-frequency domain under non-stationary operating conditions based on HHT method. Journal of Vibration and Shock, 2016,35(21):22-28 (in Chinese))
    [15] Yuan Y, Tang J . Adaptive pitch control of wind turbine for load mitigation under structural uncertainties. Renewable Energy, 2017,105:483-494
    [16] 李焦赞, 高正红 . 基于几何不确定性的翼型多目标稳健优化设计. 力学学报, 2011,43(3):611-615
    [16] ( Li Jiaozan, Gao Zhenghong , Multi objective optimization methodology for airfoil robust desigm under geometry uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(3):611-615 (in Chinese))
    [17] 赵轲, 高正红, 黄江涛 等. 基于PCE方法的翼型不确定性分析及稳健设计. 力学学报, 2014,46(1):10-19
    [17] ( Zhao Ke, Gao Zhenghong, Huang Jiangtao , et al. Uncertainty quantification and robust design of airfoil based on polynomial chaos technique. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(1):10-19 (in Chinese))
    [18] 徐林程, 王刚 . 翼型风洞试验中不确定性分析的自动微分方法. 航空学报, 2014,35(8):2102-2111
    [18] ( Xu Lincheng, Wang Gang . Uncertainty analysis of airfoil wind tunnel tests with automatic differentiation. Acta Aeronautica ET Astronautica Sinica, 2014,35(8):2102-2111 (in Chinese))
    [19] 郑宇宁, 邱志平, 黄仁 等. 二元可变后缘翼型的鲁棒优化设计. 北京航空航天大学学报, 2015,41(5):897-903
    [19] ( Zheng Yuning, Qiu Zhiping, Huang Ren , et al. Robust design optimization of a two-dimensional airfoil with deformable trailing edge. Journal of Beijing University of Aeronautics and Astronautics, 2015,41(5):897-903 (in Chinese))
    [20] 乔晨亮, 许和勇, 叶正寅 . 钝后缘风力机翼型的环量控制研究. 力学学报, 2019,51(1):135-145
    [20] ( Qiao Chenliang, Xu Heyong, Ye Zhengyin . Circulation control on wind turbine airfoil with blunt trailing edge. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):135-145 (in Chinese))
    [21] 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    [21] ( Li Guoqiang, Zhang Weiguo, Chen Li , et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanic, 2018,50(4):751-765 (in Chinese))
    [22] 邓凯文, 陈海昕 . 基于差分进化和RBF响应面的混合优化算法. 力学学报, 2017,49(2):441-455
    [22] ( Deng Kaiwen, Chen Haixin . Hybrid optimization algorithm based on differential evolution and RBF response surface. Chinese Journal of Theoretical and Applied Mechanic, 2017,49(2):441-455 (in Chinese))
    [23] Keshavarzzadeh V, Ghanem RG, Tortorelli DA . Shape optimization under uncertainty for rotor blades of horizontal axis wind turbines. Computer Methods in Applied Mechanics and Engineering, 2019,354:271-306
    [24] Murcia JP, Réthoré PE, Dimitrov N , et al. Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates. Renewable Energy, 2018,119:910-922
    [25] Antonini EGA, Romero DA, Amon CH . Improving CFD wind farm simulations incorporating wind direction uncertainty. Renewable Energy, 2019,133:1011-1023
    [26] Toft HS, Svenningsen L, S?rensen JD . Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads. Renewable Energy, 2016,90:352-361
    [27] Horna JT, Krokstad JR, Leir BJ . Impact of model uncertainties on the fatigue reliability of offshore wind turbines. Marine Structures, 2019,64:174-185
    [28] Yan J, Zhang H, Liu YQ , et al. Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modeling. Applied Energy, 2019,239:1356-1370
    [29] Giguere P, Selig MS . Design of a tapered and twisted blade for the NREL combined experiment rotor. National Renewable Energy Laboratory, 1999
    [30] 李鸿秀, 朱瑞兆, 王蕊 等. 不同地形风电场湍流强度日变化和年变化分析. 太阳能学报, 2014,35(11):2327-2333
    [30] ( Li Hongxiu, Zhu Ruizhao, Wang Rui , et al. Wind turbulence intensity of daily and yearly variation analysis in different kinds of terrain. Acta Energiae Solaris Sinica, 2014,35(11):2327-2333 (in Chinese))
  • 期刊类型引用(9)

    1. 葛艺芃,姜超,张亮,刘占芳,王子康,张凯. 考虑预应力松弛的张拉整体机械臂可靠性分析. 工程力学. 2024(10): 237-246 . 百度学术
    2. 唐新姿,李可翔,何文双,陈睿,彭锐涛. 多工况风电叶片颤振相关性分析与气弹优化. 机械工程学报. 2024(20): 300-314 . 百度学术
    3. 张祯,许波峰,李振,范星星,李奎,汪亚洲. 基于非线性气弹模型的风力机长柔性叶片优化方法. 新能源进展. 2024(06): 642-648 . 百度学术
    4. 姜昌伟,谢云峰,石尔,刘代飞,李杰,胡章茂. 基于侵入混沌多项式法的随机多孔介质内顺磁性流体热磁对流不确定度量化. 力学学报. 2022(01): 106-118 . 本站查看
    5. 秦梦飞,施伟,柴威,付兴,李昕. 台风过境下大型单桩式海上风机结构动力特性研究. 力学学报. 2022(04): 881-891 . 本站查看
    6. 何佳琦,贾晓璇,吴伟达,钟杰华,罗阳军. P-CS不确定性量化模型与其性能数据驱动更新方法. 力学学报. 2022(10): 2808-2824 . 本站查看
    7. 许波峰,朱紫璇,戴成军,蔡新,王同光,赵振宙. 风剪切对风力机叶片气动性能及尾迹形状的影响. 力学学报. 2021(02): 362-372 . 本站查看
    8. 姜昌伟,刘星,石尔,李韬海,江怡. 基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化. 应用数学和力学. 2021(05): 481-491 . 百度学术
    9. 许灿,朱平,刘钊,陶威. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究. 力学学报. 2020(03): 763-773 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  2007
  • HTML全文浏览量:  498
  • PDF下载量:  188
  • 被引次数: 13
出版历程
  • 收稿日期:  2019-07-21
  • 刊出日期:  2020-02-09

目录

    /

    返回文章
    返回