EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黏弹性阻尼作用下轴向运动Timoshenko梁振动特性的研究

周远 唐有绮 刘星光

周远, 唐有绮, 刘星光. 黏弹性阻尼作用下轴向运动Timoshenko梁振动特性的研究[J]. 力学学报, 2019, 51(6): 1897-1904. doi: 10.6052/0459-1879-19-205
引用本文: 周远, 唐有绮, 刘星光. 黏弹性阻尼作用下轴向运动Timoshenko梁振动特性的研究[J]. 力学学报, 2019, 51(6): 1897-1904. doi: 10.6052/0459-1879-19-205
Zhou Yuan, Tang Youqi, Liu Xingguang. VIBRATION CHARACTERISTICS OF AXIALLY MOVING TIMOSHENKO BEAM UNDER VISCOELASTIC DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1897-1904. doi: 10.6052/0459-1879-19-205
Citation: Zhou Yuan, Tang Youqi, Liu Xingguang. VIBRATION CHARACTERISTICS OF AXIALLY MOVING TIMOSHENKO BEAM UNDER VISCOELASTIC DAMPING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1897-1904. doi: 10.6052/0459-1879-19-205

黏弹性阻尼作用下轴向运动Timoshenko梁振动特性的研究

doi: 10.6052/0459-1879-19-205
基金项目: 1) 国家自然科学基金资助项目(11672186)
详细信息
    作者简介:

    2) 周远, 硕士研究生, 主要研究方向: 非线性动力学与振动控制. E-mail: zysuzhou@163.com

    通讯作者:

    唐有绮

  • 中图分类号: O323

VIBRATION CHARACTERISTICS OF AXIALLY MOVING TIMOSHENKO BEAM UNDER VISCOELASTIC DAMPING

  • 摘要: 黏弹性阻尼一直是轴向运动系统的研究热点之一.以往研究轴向运动系统大都没有考虑黏弹性阻尼的影响.但在工程实际中, 存在黏弹性阻尼的轴向运动体系更为普遍.本文研究了黏弹性阻尼作用下轴向运动Timoshenko梁的振动特性.首先, 采用广义Hamilton原理给出了轴向运动黏弹性Timoshenko梁的动力学方程组和相应的简支边界条件.其次, 应用直接多尺度法得到了轴速和相关参数的对应关系, 给出了前两阶固有频率和衰减系数在黏弹性作用下的近似解析解.最后, 采用微分求积法分析了在有无黏弹性作用下前两阶固有频率和衰减系数随轴速的变化; 给出了前两阶固有频率和衰减系数在黏弹性作用下的近似数值解, 验证了近似解析解的有效性.结果表明: 随着轴速的增大, 梁的固有频率逐渐减小.梁的固有频率和衰减系数随着黏弹性系数的增大而逐渐减小, 其中衰减系数与黏弹性系数成正比关系, 黏弹性系数对第一阶衰减系数和固有频率的影响很小, 对第二阶衰减系数和固有频率的影响较大.

     

  • 1 Lee U, Kim J, Oh H. Spectral analysis for the transverse vibration of an axially moving Timoshenko beam. Journal of Sound and Vibration, 2004,271:685-703
    2 Yan QY, Ding H, Chen LQ. Nonlinear dynamics of axially moving viscoelastic Timoshenko beam under parametric and external excitations. Applied Mathematics and Mechanics-English Edition, 2015,36:971-984
    3 Ghayesh M, Amabili, HM. Nonlinear dynamics of an axially moving Timoshenko beam with an internal resonance. Nonlinear Dynamics, 2013,73:39-52
    4 高晨彤, 黎亮, 章定国 等. 考虑剪切效应的旋转FGM楔形梁刚柔耦合动力学建模与仿真. 力学学报, 2018,50(3):654-666
    4 ( Gao Chentong, Li Liang, Zhang Dingguo, et al. Dynamic modeling and imulation of rotating FGM tapered beams with shear effect. Chinese Journal of heoretical and Applied Mechanics, 2018,50(3):654-666 (in Chinese))
    5 Tang YQ, Luo EB, Yang XD. Complex modes and traveling waves in axially moving Timoshenko beams. Applied Mathematics and Mechanics, 2018,39(4):597-608
    6 王乐, 余慕春 . 轴力对自由边界Timoshenko梁横向动特性影响研究. 兵器装备工程学报, 2018 ( 3):36-37
    6 ( Wang Le, Yu Muchun, Effect of axial force on the lateral vibration characteristics of Timoshenko beam under free boundary condition. Journal of Ordnance Equipment Engineering, 2018, ( 3):36-37 (in Chinese))
    7 唐有绮 . 轴向变速黏弹性Timoshenko梁的非线性振动. 力学学报, 2013,45(6):965-973
    7 ( Tang Youqi, Nonlinear vibrations of axially accelerating viscoelastic Timoshenko beams. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(6):965-973 (in Chinese))
    8 华洪良, 廖振强, 张相炎 . 轴向移动悬臂梁高效动力学建模及频率响应分析. 力学学报, 2017,49(6):1390-1398
    8 ( Hua hongliang, Liao Zhenqiang, Zhang Xiangyan. An efficient dynamic modeling method of an axially moving cantilever beam and frequency response analysis. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1390-1398 (in Chinese))
    9 黄悦, 韩志军, 路国运 . 轴向载荷下功能梯度材料Timoshenko梁动力屈曲分析. 高压物理学报, 2018,144(4):96-103
    9 ( Huang Yue, Han Zhijun, Lu Guoyun, Dynamic buckling of functionally graded timoshenko beam under axial load. Journal of High Pressure Physics, 2018,144(4):96-103 (in Chinese))
    10 胡璐, 闫寒, 张文明 等. 黏性流体环境下V 型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653
    10 ( Hu Lu, Yan Han, Zhang Wenming, et al. Analysis of flexural vibration of Vshaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653 (in Chinese))
    11 Tang YQ, Chen LQ, Zhang HJ, et al. Stability of axially accelerating viscoelastic Timoshenko beams: Recognition of longitudinally varying tensions. Mechanism and Machine Theory, 2013,62:31-50
    12 Asghari M, Rahaeifard M, Kahrobaiyan MH, et al. The modified couple stress functionally graded Timoshenko beam formulation. Materials & Design, 2011,32(3):1435-1443
    13 An C, Su J. Dynamic response of axially moving Timoshenko beams: integral transform solution. Applied Mathematics and Mechanics, 2014,35(11):1421-1436
    14 Ghayesh MH, Ghayesh HA, Reid T. Sub- and super-critical nonlinear dynamics of a harmonically excited axially moving beam. International Journal of Solids and Structures, 2012,49:227-243
    15 Ghayesh MH, Amabili M. Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mechanism and Machine Theory, 2013,67(67):1-16
    16 Farokhi H, Ghayesh MH. Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Communications in Nonlinear Science & Numerical Simulation, 2018,59:592-605
    17 Qiang LY, Li JJ, Zhang NH. Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method. Applied Mathematics and Mechanics, 2019,40(4):549-562
    18 Lü HW, Li L, Li YH. Non-linearly parametric resonances of an axially moving viscoelastic sandwich beam with time-dependent velocity. Applied Mathematical Modeling, 2018,53:83-105
    19 Wang B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Applied Mathematics and Mechanics, 2012,33(6):817-828
    20 Liu D, Xu W, Xu Y. Dynamic responses of axially moving viscoelastic beam under a randomly disordered periodic excitation. Journal of Sound and Vibration, 2012,331:4045-4056
    21 Simsek M. Non-linear vibration analysis of a functionally graded Timoshenko beam under action of a moving harmonic load. Composite Structures, 2010,92(10):2532-2546
    22 Mokhtari A, Mirdamadi HR, Ghayour M. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam. Mechanical Systems and Signal Processing, 2017,92:124-145
    23 随岁寒 . 轴向运动功能梯度梁的动力学分析. [硕士论文]. 苏州: 苏州大学, 2015
    23 ( Sui Suihan . Dynamic analysis of axial motion functionally graded beams. [Master Thesis]. Suzhou: Suzhou University, 2015 (in Chinese))
    24 Tang YQ, Zhang DB, Gao JM. Parametric and internal resonance of axially accelerating viscoelastic beams with the recognition of longitudinally varying tensions. Nonlinear Dynamics, 2016,83(1-2):401-418
    25 Yang XD, Tang YQ, Chen LQ, et al. Dynamic Stability of Axially Accelerating Timoshenko beams: Averaging Method. European Journal of Mechanics A/Solids, 2010,29:81-90
    26 Ding H, Tang YQ, Chen LQ. Frequencies of transverse vibration of an axially moving viscoelastic beam. Journal of Vibration and Control, 2017,23(20):3504-3514
    27 杨鄂川, 李映辉, 赵翔 等. 含旋转运动效应裂纹梁横向振动特性的研究. 应用力学学报, 2017,34(6):1160-1165
    27 ( Yang Echuan, Li Yinghui, Zhao Xiang, et al. Investigations of transverse vibration characteristics of a rotating beam with a crack. Journal of applied mechanics, 2017,34(6):1160-1165 (in Chinese))
    28 张国策, 丁虎, 陈立群 . 复模态分析超临界轴向运动梁横向非线性振动. 动力学与控制学报, 2015,13(4):283-287
    28 ( Zhang Guoce, Ding Hu, Chen Liqun, Complex modal analysis of transversally nonlinear vibration for supercritically axially moving beams. Journal of Dynamics and Control, 2015,13(4):283-287 (in Chinese))
    29 吕海炜, 李映辉, 刘启宽 等. 轴向运动粘弹性夹层梁的横向振动. 动力学与控制学报, 2013,11(4):314-319
    29 ( Lü Haiwei, Li Yinghui, Liu Qikuan, et al. Transverse Vibration of Axially Moving Viscoelastic Sandwich Beam. Journal of Dynamics and Control, 2013,11(4):314-319 (in Chinese))
    30 陈红永, 李上明 . 轴向运动梁在轴向载荷作用下的动力学特性研究. 振动与冲击, 2016,35(19): 75-80
    30 ( Chen Hongyong, Li Shangming, Study on dynamic characteristics of axial moving beam under axial load. Journal of Vibration and Shock, 2016,35(19): 75-80 (in Chinese))
    31 丁虎 . 数值仿真轴向运动黏弹性梁非线性参激振动. 计算力学学报, 2012,29(4):545-550
    31 ( Ding Hu, Numerical investigation into nonlinear parametric resonance of axially moving accelerating viscoelastic beams. Chinese Journal of Computational Mechanics, 2012,29(4):545-550 (in Chinese))
    32 Bert CW, Malik M. The differential quadrature method in computational mechanics: a review. Applied Mechanics Reviews, 1996,49:1-28
  • 加载中
计量
  • 文章访问数:  960
  • HTML全文浏览量:  199
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 刊出日期:  2019-11-18

目录

    /

    返回文章
    返回