EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风浪联合发电系统水动力学研究进展

周斌珍 胡俭俭 谢彬 丁波寅 夏英凯 郑小波 林志良 李晔

周斌珍, 胡俭俭, 谢彬, 丁波寅, 夏英凯, 郑小波, 林志良, 李晔. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649. doi: 10.6052/0459-1879-19-202
引用本文: 周斌珍, 胡俭俭, 谢彬, 丁波寅, 夏英凯, 郑小波, 林志良, 李晔. 风浪联合发电系统水动力学研究进展[J]. 力学学报, 2019, 51(6): 1641-1649. doi: 10.6052/0459-1879-19-202
Zhou Binzhen, Hu Jianjian, Xie Bin, Ding Boyin, Xia Yingkai, Zheng Xiaobo, Lin Zhiliang, Li Ye. RESEARCH PROGRESS IN HYDRODYNAMICS OF WIND-WAVE COMBINED POWER GENERATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1641-1649. doi: 10.6052/0459-1879-19-202
Citation: Zhou Binzhen, Hu Jianjian, Xie Bin, Ding Boyin, Xia Yingkai, Zheng Xiaobo, Lin Zhiliang, Li Ye. RESEARCH PROGRESS IN HYDRODYNAMICS OF WIND-WAVE COMBINED POWER GENERATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1641-1649. doi: 10.6052/0459-1879-19-202

风浪联合发电系统水动力学研究进展

doi: 10.6052/0459-1879-19-202
基金项目: 1) 国家自然科学基金中英国际合作重点项目(51761135012);国家自然科学基金中英国际合作重点项目(51761135013);国家自然科标识码项目(11872248);科技部国际合作项目资助(SQ2017YFGH001115)
详细信息
    通讯作者:

    李晔

  • 中图分类号: TK71,P741

RESEARCH PROGRESS IN HYDRODYNAMICS OF WIND-WAVE COMBINED POWER GENERATION SYSTEM

  • 摘要: 随着化石能源枯竭和全球变暖等环境问题的日益严重,海洋可再生能源(海上风能、波浪能和潮流能)成为研究热点. 为了有效开发海洋可再生能源,降低成本,多种能源综合开发成为现阶段的趋势. 海上风能与波浪能结合具有广阔的应用前景,联合发电系统不断创新. 水动力性能是联合发电系统与波浪相互作用的重要基础. 本文简要介绍多种应用在联合发电系统上的水动力学数值模拟方法,包括线性频域、线性时域、势流非线性方法标识码基于 Navier-Stokes 方程的黏性方法,对现有文献的水动力学数值模拟方法进行综述,从计算效率和精度标识码析其优缺点,且进一步阐述水动力控制优化的技术原理与实验技术主要科研难点,为联合发电系统的水动力设计提供依据. 得到以下主要结论:从计算效率上看,线性频域方法最优,其次为线性时域、势流非线性、黏性方法,从计算精标识码,与前者恰好相反;综合考虑计算效率和精度,采用考虑黏性修正的势流方法来研究是一个切实可行的方案;模标识码方法和优化控制技术目前还不够成熟,尚处于探索阶段.

     

  • 1 Bahaj AS . Generating electricity from the oceans. Renewable Sustainable Energy Review, 2011,15(7):3399-3416
    2 https://www.siemensgamesa.com/en-int
    3 Edwards KA, Mekhiche M . Ocean power technologies powerbuoy: System-level design. Development and Validation Methodology, 2014
    4 http://www.seageneration.co.uk/
    5 Astariz S, Perez-collazo C, Abanades J , et al. Co-located wave-wind farms: Economic assessment as a function of layout. Renewable Energy, 2015,83:837-849
    6 Cradden L, Kalogeri C, Barrios IM , et al. Multi-criteria site selection for offshore renewable energy platforms. Renewable Energy, 2016,87:791-806
    7 Veigas M, Iglesias G . Wave and offshore wind potential for the island of Tenerife. Energy Conversion and Management, 2013,76:738-745
    8 Veigas M, Iglesias G . A hybrid wave-wind offshore farm for an island. International Journal of Green Energy, 2014,12:570-576
    9 Stoutenburg ED, Jenkins N, Jacobson MZ . Power output variations of collocated offshore wind turbines and wave energy converters in California. Renewable Energy, 2010,35(12):2781-2791
    10 P$\acute{e}$rez-Collazo C, Greaves D, Iglesias G . A review of combined wave and offshore wind energy. Renewable & Sustainable Energy Reviews, 2015,42(42):141-153
    11 Pelagic Power AS. W2Power web Page. 2011
    12 Wave Star AS . Wave Star energy web page. Wave Star AS, 2012
    13 陈嘉豪, 胡志强 . 半潜式海上浮式风机气动阻尼特性研究. 力学学报, 2019,51(4):1255-1265
    13 ( Chen Jiahao, Hu Zhiqiang . Study on aerodynamic damping of semi-submersible floating wind turbines. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1255-1265 (in Chinese))
    14 李国强, 张卫国, 陈立 等. 风力机叶片翼型动态试验技术研究. 力学学报, 2018,50(4):751-765
    14 ( Li Guoqiang, Zhang Weiguo, Chen Li , et al. Research on dynamic test technology for wind turbine blade airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):751-765 (in Chinese))
    15 刘利琴, 郭颖, 赵海祥 等. 浮式垂直轴风机的动力学建模、仿真与实验研究, 力学学报, 2017,49(2):299-307
    15 ( Liu Liqin, Guo Ying, Zhao Haixiang , et al. Dynamic modeling, simulation and model tests research on the floating VAWT. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):299-307 (in Chinese))
    16 许鑫, 杨建民, 李欣 等. 海洋工程中多浮体系统的水动力研究综述. 中国海洋平台, 2014,29(4):1-9
    16 ( Xu Xing, Yang Jianmin, Li Xin , et al. Review of the research on multi-body system hydrodynamics. China Offshore Platform, 2014,29(4):1-9 (in Chinese))
    17 李玉成, 滕斌 . 波浪对海上建筑物的作用. 北京: 海洋出版社, 2002
    17 ( Li Yucheng, Teng Bin. Wave Action on Marine Structures. Beijing: China Ocean Press, 2002 (in Chinese))
    18 勾莹 . 快速多极子方法在多浮体和水弹性问题中的应用. [博士论文]. 大连:大连理工大学, 2006
    18 ( Gou Ying . The fast multipole method and its application to the multiple floating bodies and hydroelasticity. [PhD Thesis]. Dalian: Dalian University of Technology, 2006 (in Chinese))
    19 Liu YY, Yoshida S, Hu CH , et al. A reliable open-source package for performance evaluation of floating renewable energy systems in coastal and offshore regions. Energy Conversion and Management, 2018,174:516-536
    20 De Backer G, Vantorre M, Beels C , et al. Power absorption by closely spaced point absorbers in constrained conditions. IET Renewable Power Generation, 2010,4(6):579-591
    21 Kelly T, Dooley T, Campbell J , et al. Comparison of the experimental and numerical results of modelling a 32-oscillating water column (OWC), V-shaped floating wave energy converter. Energies, 2013,6:4045-4077
    22 Hyebin L, Sunny P, Yoon B . Performance analysis of multiple wave energy converters placed on a floating platform in the frequency domain. Energies, 2018,11(2):406
    23 Zhang HC, Xu DL, Zhao H , et al. Energy extraction of wave energy converters embedded in a super-scale modularized floating platform. Energy, 2018,158:317-329
    24 Taghipour R, Perez T, Moan T . Hybrid frequency-time domain models for dynamic response analysis of marine structures. Ocean Engineering, 2008,35(7):685-705
    25 Babarit A, Mouslim H, Cl$\acute{e}$ment A , et al. On the numerical modelling of the nonlinear behaviour of a wave energy converter//28th International Conference on Ocean, Offshore and Arctic Engineering, Hawaii, USA, 2009
    26 O’Cathain M, Leira BJ, Ringwood JV , et al. A modelling methodology for multi-body systems with application to wave-energy devices. Ocean Engineering, 2008,35:1381-1387
    27 唐友刚, 赵青, 黄印 等. 筏式波浪能发电装置浮体水动力相互作用与能量俘获研究. 海洋技术学报, 2016,35(4):87-92
    27 ( Tang Yougang, Zhao Qing, Huang Yin , et al. Study on hydrodynamic interaction and energy capture for raft wave energy converter. Ocean Technology, 2016,35(4):87-92 (in Chinese))
    28 Peiffer A, Roddier D, Aubault A . Design of a point absorber inside the WindFloat structure//30nd International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, June 19-24, 2011
    29 Aubault A, Alves M, Sarmento A , et al. Modeling of an oscillating water column on the floating foundation WindFloat//30nd International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, June 19-24, 2011
    30 Antoine P, Dominique R . Design of an oscillating wave surge converter on the windfloat structure//4th International Conference on Ocean Energy, Dublin, October17, 2012
    31 Muliawan MJ, Karimirad M, Moan T . Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter. Renewable Energy, 2013,50:47-57
    32 Wan L, Gao Z, Moan T . Experimental and numerical study of hydrodynamic responses of a combined wind and wave energy converter concept in survival modes. Coastal Engineering, 2015,104:151-169
    33 Wan L, Gao Z, Moan T , et al. Comparative experimental study of the survivability of a combined wind and wave energy converter in two testing facilities. Ocean Engineering, 2016,111:82-94
    34 Michailides C, Gao Z, Moan T . Experimental study of the functionality of a semisubmersible wind turbine combined with flap-type wave energy converters. Renewable Energy, 2016,93:675-690
    35 Michailides C, Gao Z, Moan T . Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions. Marine Structures, 2016,50:35-54
    36 Li L, Gao Y, Yuan ZM , et al. Dynamic response and power production of a floating integrated wind, wave and tidal energy system. Renewable Energy, 2018: 412-422
    37 姜胜超 . 波浪作用下船舶运动与液舱内流体晃荡的耦合数值分析. [博士论文]. 大连:大连理工大学, 2013
    37 ( Jiang Shengchao . Numerical simulation on coupled effect between ship motion and liquid sloshing under wave action. [PhD Thesis]. Dalian: Dalian University of Technology, 2013 (in Chinese))
    38 Ma QW, Yan S . QALE-FEM numerical modeling of non-linear interaction between 3D moored floating bodies and steep waves. International Journal for Numerical Methods in Engineering, 2009,78:713-756
    39 Shivaji GT, Sen D . Time domain simulation of side-by-side floating bodies using a 3D numerical wave tank approach. Applied Ocean Research, 2016,58:189-217
    40 Feng XY, Bai W . Hydrodynamic analysis of marine multibody systems by a nonlinear coupled model. Journal of Fluids and Structures, 2017,70:72-101
    41 Wan L, Greco M, Lugni C , et al. A combined wind and wave energy-converter concept in survival mode: Numerical and experimental study in regular waves with a focus on water entry and exit. Applied Ocean Research, 2017,63:200-216
    42 Bai W, Eatock Taylor R . Fully nonlinear simulation of wave interaction with fixed and floating flares structures. Ocean Engineering, 2009,36:223-236
    43 Zhou BZ, Wu GX, Teng B . Fully nonlinear wave interaction with freely floating non-wall-sided structures. Engineering Analysis with Boundary Elements, 2015,50:117-132
    44 Zhou BZ, Wu GX . Resonance of a tension leg platform excited by third harmonic force in nonlinear regular waves. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2015,373:20140105
    45 Sauder T, Kristiansen T, Ostman A . Validation of a numerical method for the study of piston-like oscillations between a ship and a terminal //Proceedings of the Twentieth International Offshore and Polar Engineering Conference, Beijing, China, June, 2010
    46 Yu Y, Li Y . Reynolds-Averaged Navier-Stokes simulation of the heave performance of a two-body floating-point absorber wave energy system. Computers & Fluids, 2013,73:104-114
    47 McComb C, Lawson M, Yu YH . Combining multi-body dynamics and potential flow simulation methods to model a wave energy converter // Proceedings of the 1st Marine Energy Technology Symposium, Washington, April 10-11, 2013
    48 Ren NX, Li Y, Ou JP . Coupled wind-wave time domain analysis of floating offshore wind turbine based on Computational Fluid Dynamics method. Journal of Renewable and Sustainable Energy, 2014,6(2):023106
    49 Shi HD, Han Z, Zhao CY . Numerical study on the optimization design of the conical bottom heaving buoy convertor. Ocean Engineering, 2019,173:235-243
    50 Zhang HM, Zhou BZ, Vogel C , et al. Hydrodynamic performance of a floating breakwater as an oscillating-buoy type wave energy converter. Applied Energy, 2020,257:113996
    51 Chen ZF, Zhou BZ, Zhang L , et al. Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system, Energy, 2018,165, 1008-1020
    52 Xu QL, Li Y, Yu YH , et al. Experimental and numerical investigations of a two-body floating-point absorber wave energy converter in regular waves. Journal of Fluids and Structures, 2019,102613
    53 段磊, 李晔 . 漂浮式海上大型风力机研究进展. 中国科学: 物理学力学天文学, 2016,46(12):124703
    53 ( Duan Lei, Li Ye . Progress pf recent research and development in floating offshore wind turbines. Sci Sin-Phs Mech Astron, 2016,46(12):124703 (in Chinese))
    54 Nielsen FG, Hanson TD, Skaare B . Integrated Dynamic Analysis of offshore floating wind turbines. Hydro Oil & Energy, Hamburg, Germany, 2006
    55 Cermelli C, Aubault A, Roddier D , et al. Qualification of a semi-Submersible floating foundation for multi-Megawatt wind turbines. offshore technology Conference, Houston, USA, 2010
    56 Shin H . Model test of the OC3-hywind floating offshore wind turbine//Proceedings of the Twenty-first International Offshore and Polar Engineering Conference, Maui, HI, USA, ISOPE, 2011: 361-367
    57 Martin HR, Kimball RW, Viselli AM , et al. Methodology for wind/wave basin testing of offshore floating wind turbines//Proceedings of the ASME, 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 2012
    58 Koo B, Goupee AJ, Lambrakos K , et al. Model tests for a floating wind turbine on three different floaters//Proceedings of the ASME, 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 2012
    59 Goupee AJ, Koo B, Kimball RW , et al. Experimental Comparison of Three Floating Wind Turbine Concepts//Proceedings of the ASME, 31st International Conference on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, 2012
    60 Huijs F, de Ridder EJ, Savenije F . Comparison of model tests and coupled simulations for a semi-submersible floating wind turbine//Proceedings of the ASME, 33rd International Conference on Ocean, Offshore and Arctic Engineering, San Francisco, California, USA, 2014
    61 Falnes J. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press, 2002
    62 Ringwood JV, Bacelli G, Fusco F . Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation. IEEE Control Systems Magazine, 2014,34:30-55
    63 Fusco F, Ringwood JV . Short-term wave forecasting for real-time control of wave energy converters. IEEE Transactions on Sustainable Energy, 2010,1:99-106
    64 Ding B, Sergiienko N, Meng F , et al. The application of modal analysis to the design of multi-mode point absorber wave energy converters. Ocean Engineering, 2019,171:603-618
    65 Scruggs JT, Lattanzio SM, Taflanidis AA , et al. Optimal causal control of a wave energy converter in a random sea. Applied Ocean Research, 2013,42:1-15
    66 Babarit A, Celement AH . Optimal latching control of a wave energy device in regular and irregular waves. Applied Ocean Research, 2006,28:77-91
    67 Chen ZF, Zhou BZ, Zhang L , et al. Performance evaluation of a dual resonance wave-energy convertor in irregular waves. Applied Ocean Research, 2018,77:78-88
  • 加载中
计量
  • 文章访问数:  1318
  • HTML全文浏览量:  208
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 刊出日期:  2019-11-18

目录

    /

    返回文章
    返回