EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HTPB复合底排药压缩屈服应力模型研究

武智慧 牛公杰 郝玉风 钱建平 刘荣忠

武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. doi: 10.6052/0459-1879-19-200
引用本文: 武智慧, 牛公杰, 郝玉风, 钱建平, 刘荣忠. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6): 1810-1819. doi: 10.6052/0459-1879-19-200
Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. doi: 10.6052/0459-1879-19-200
Citation: Wu Zhihui, Niu Gongjie, Hao Yufeng, Qian Jianping, Liu Rongzhong. RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1810-1819. doi: 10.6052/0459-1879-19-200

HTPB复合底排药压缩屈服应力模型研究

doi: 10.6052/0459-1879-19-200
基金项目: 1) 国家自然科学基金资助项目(11402248)
详细信息
    通讯作者:

    钱建平

  • 中图分类号: TJ45,O345,TB324

RESEARCH ON MODELING OF COMPRESSIVE YIELD BEHAVIOR FOR HTPB COMPOSITE BASE BLEED GRAIN

  • 摘要: 目前广泛应用于底排增程技术的 HTPB 复合底排药 (composite base bleed grain,CBBG) 是一种颗粒填充含能材料,战场环境中将承受冲击、温度等载荷作用. 为研究 HTPB CBBG 冲击压缩力学性能,进行了不同温度 (233$\sim$323 K) 和应变率 (1100$\sim$7900 s$^{-1}$) 下的分离式霍普金森压杆实验. 实验结果表明,各工况下,应力应变曲线均呈现屈服-$\!$-应变硬化特征,HTPB CBBG 保持高韧性. 提高应变率和降低温度均导致相同应变下的应力幅值上升,但温度较应变率对HTPB CBBG 冲击压缩力学性能的影响更为显著. 基于所研究温度范围高于 HTPB CBBG 玻璃化转变温度,通过将水平、垂直移位因子与温度的关系表示为 WLF 方程的形式,将时温等效原理引入协同模型,并计及内应力的应变率增强效应,提出了一种新的屈服应力模型.选取参考温度,利用水平、垂直移位因子-$\!$-温度曲线和屈服应力主曲线拟合模型参数.模型预测值与实验数据对比结果表明:该模型可准确表征 233$\sim$323 K 时 HTPB CBBG 屈服应力的双线性应变率相关性,明确了较低和较高应变率时,应变率效应分别主要由内应力和驱动力贡献.

     

  • 1 刘志林, 王晓鸣, 姚文进 等. 底排药的高应变率动态响应实验和仿真. 含能材料, 2014,22(4):529-534
    1 ( Liu Zhilin, Wang Xiaoming, Yao Wenjin, et al. Numerical simulation and mechanical behavior of base bleed grain at high strain rate. Chinese Journal of Energetic Materials, 2014,22(4):529-534 (in Chinese))
    2 陈劲操, 周彦煌, 郎明君 . 药温测量中环境温度的作用及精确测定. 弹道学报, 2001,13(3):33-37
    2 ( Chen Jincao, Zhou Yanhuang, Lang Mingjun. Ambient temperature action and precision detection in chamber temperature measurement. Journal of Ballistics, 2001,13(3):33-37 (in Chinese))
    3 王哲军, 强洪夫, 王广 等. 固体推进剂力学性能和本构模型研究进展. 含能材料, 2016,24(4):403-416
    3 ( Wang Zhejun, Qiang Hongfu, Wang Guang, et al. Review on the mechanical properties and constitutive models of solid propellants. Chinese Journal of Energetic Materials, 2016,24(4):403-416 (in Chinese))
    4 肖有才 . PBX 炸药的动态力学性能和冲击损伤行为研究.[博士论文]. 哈尔滨:哈尔滨工业大学, 2016
    4 ( Xiao Youcai . Study of dynamic mechanical property and impact damage behavior of PBX.[PhD Thesis]. Harbin: Harbin Institute of Technology, 2016 (in Chinese))
    5 唐明峰 . 浇注 PBX 的力学行为与本构模型研究. [硕士论文]. 绵阳:中国工程物理研究院, 2014
    5 ( Tang Mingfeng . Study of mechanical properties and constitutive model of PBX. [Master Thesis]. Mianyang: China Academy of Engineering Physics, 2014 (in Chinese))
    6 Wang ZJ, Qiang HF, Wang G. Experimental investigation on high strain rate tensile behavior of HTPB propellant at low temperatures . Propellants, Explosives, Pyrotechnics, 2015,40(6):814-820
    7 Wang ZJ, Qiang HF, Wang TJ, et al. A thermovisco-hyperelstic constitutive model of HTPB propellant with damage at intermediate strain rate. Mechanics of Time-Dependent Materials, 2018,22(3):291-341
    8 周海霞, 李世鹏, 谢侃 等. HTPB 推进剂宽泛应变率下粘弹性本构模型研究. 固体火箭技术, 2017,40(3):325-330
    8 ( Zhou Haixia, Li Shipeng, Xie Kan, et al. Research on the viscoelastic constitutive model of HTPB propellant over a wide range of strain rates. Journal of Solid Rocket Technology, 2017,40(3):325-330 (in Chinese))
    9 Chen XD, Lai JW, Chang XL, et al. Compressive mechanical properties of HTPB propellant at low temperatures and high strain rate. Results in Phsics, 2017,7:4079-4084
    10 杨龙 . CMDB 和 HTPB 推进剂力学行为的应变率相关性及本构模型.[博士论文]. 北京:北京理工大学, 2016
    10 ( Yang Long . Strain-rate dependency and constitutive model of mechanical behaviors of CMDE and HTPB propellant. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2016 (in Chinese))
    11 孙朝翔 . 宽泛应变率和温度下改性双基推进剂本构模型及应用研究. [博士论文]. 南京:南京理工大学, 2017
    11 ( Sun Chaoxiang . A constitutive model for modified double-base propellant over a wide range of strain rate and temperatures and its application. [PhD Thesis]. Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese))
    12 曹翌军, 黄卫东, 李金飞 . HTPB 推进剂非线性粘弹特性的时温等效研究. 推进技术, 2018,39(7):1634-1649
    12 ( Cao Yijun, Huang Weidong, Li Jinfei. Time-temperature equivalent research of nonlinear viscoelastic properties of HTPB propellant. Journal of Propulsion Technology, 2018,39(7):1634-1649 (in Chinese))
    13 Mulliken AD . Low to high strain rate deformation of amorphous polymers: Experiments and Modeling. [PhD Thesis]. Cambridge: Massachusetts Institute of Technology, 2004
    14 傅政 . 高分子材料强度及破坏行为. 第 1 版. 北京: 化学工业出版社, 2005: 7-33
    14 ( Fu Zheng. Strength and Failure Behaviors of Polymer. First Edition. Beijing: Chemical Industry Press, 2005: 7-33(in Chinese))
    15 Eyring H. Viscosityplasticity and diffusion as examples of absolute reaction rates. Journal of Chemical Physics, 1936,4(4):283-291
    16 Bauwes-Crowet C, Bauwens JC, Homes G. Tensile yield-stress behavior of glassy polymers. Journal of Polymer Science, 1969,7:735-742
    17 Omar MF, Akil HM, Ahmad ZA. Measurement and prediction of compressive properties of polymers at high strain rate loading. Materials and Design, 2011,32(8-9):4207-4215
    18 Povolo F, Hermida EB. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA. Journal of Applied Polymer Science, 1995,58(1):55-68
    19 Richeton J, Ahzi S, Daridon L, et al. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer, 2005,46(16):6035-6043
    20 Gueguen O, Richeton J, Ahzi S, et al. Micromechanically based formulation of the cooperative model for the yield behavior of semi-crystalline polymers. Acta Materialia, 2008,56(7):1650-1655
    21 Gomez-del RT, Rodriguez J. Compression yielding of polypropylenes above glass transition temperature. European Polymer Journal, 2010,46(6):1244-1250
    22 邓小秋, 李志强, 周志伟 等. MDYB-3 有机玻璃在不同应变率下的移位屈服应力行为. 爆炸与冲击, 2015,35(3):312-319
    22 ( Deng Xiaoqiu, Li Zhiqiang, Zhou Zhiwei, et al. One-dimensional yield behavior of MDYB-3 polymethyl methacrylate at different strain rate. Explosion and Shock Waves, 2015,35(3):312-319 (in Chinese))
    23 Gomez-del Rio T, Rodriguez J. Compression yielding of epoxy: Strain rate and temperature effects. Materials and Design, 2012,35:369-373
    24 Argon AS. A theory for the low-temperature plastic deformation of glassy polymers. Philosophical Magazine, 1973,28(3):839-865
    25 卢芳云, 陈荣, 林玉亮 等. 霍普金森杆实验技术. 第 1 版. 北京: 科学出版社, 2015: 30-38
    25 ( Lu Fangyun, Chen Rong, Lin Yuliang , et al. Hopkinson bar techniques. First Edition. Beijing: Science Press, 2015: 30-38(in Chinese))
    26 王宝珍, 胡时胜 . 猪肝动态力学性能及本构模型研究. 力学学报, 2017,49(6):1399-1408
    26 ( Wang Baozhen, Hu Shisheng. Research on dynamic mechanical response and constitutive model of porcine liver. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1399-1408 (in Chinese))
    27 王增会, 李锡夔 . 基于介观力学信息的颗粒材料损伤-愈合与塑性宏观表征. 力学学报, 2018,50(2):284-296
    27 ( Wang Zenghui, Li Xikui. Meso-mechanically informed macroscopic characterization of damage-healing-plasticity for granular materials. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):284-296 (in Chinese))
    28 沈超敏, 李斯宏 . 颗粒材料破碎演化路径细观热力学机制. 力学学报, 2019,51(1):16-25
    28 ( Shen Chaomin, Li Sihong. Evolution path for the particle breakage of granular materials: A micromechanical and thermodynamic insight. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):16-25 (in Chinese))
    29 Jiang J, Xu JS, Zhang ZS, et al. Rate-dependent compressive behavior of EPDM insulation: Experimental and constitutive analysis. Mechanics of Materials, 2016,96:30-38
    30 Boyce MC, Socrate S, Llana PG. Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition. Polymer, 2000,41(6):2183-2201
    31 Srivastava V, Chester SA, Ames NM, et al. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. International Journal of Plasticity, 2010,26(8):1138-1182
    32 罗鑫, 许金余, 卢京平 等. 碱矿渣粉煤灰混凝土的冲击损伤特性. 建筑材料学报, 2014,17(6):1087-1091
    32 ( Luo Xin, Xu Jinyu, Lu Jingping, et al. Impact damage characteristics of alkali active slag and fly ash based concrete. Journal of Building Materials, 2014,17(6):1087-1091 (in Chinese))
    33 Fotheringham DG, Cherry BW. The role of recovery forces in the deformation of linear polyethylene. Journal of Materials Science, 1978,13(5):951-964
    34 周光泉, 刘孝敏 . 粘弹性理论. 第 1 版. 合肥: 中国科学技术大学出版社, 1996: 79-84
    34 ( Zhou Guangquan, Liu Xiaomin. Viscoelasticity Theory. First Edition. Hefei: University of Science and Technology of China Press, 1996: 79-84(in Chinese))
    35 王宝珍, 周相荣, 胡时胜 . 高应变率下橡胶的时温等效关系及力学形态. 高分子材料与科学, 2008,24(8):5-8
    35 ( Wang Baozhen, Zhou Xiangrong, Hu Shisheng. Dynamic mechanical behavior and rate-temperature equivalence of rubber. Polymer Materials Science and Engineering, 2008,24(8):5-8 (in Chinese))
    36 Ho SY, Fong CW. Temperature dependence of high strain-rate impact fracture behavior in highly filled polymeric composite and plasticized thermoplastic propellants. Journal of Materials Science, 1987,22:3023-3031
    37 Wang J, Xu YJ, Zhang WH, et al. A damage-based elastic-viscoplastic constitutive model for amorphous glassy polycarbonate polymers. Materials and Design, 2016,97:519-531
  • 加载中
计量
  • 文章访问数:  941
  • HTML全文浏览量:  97
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-24
  • 刊出日期:  2019-11-18

目录

    /

    返回文章
    返回