EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱与晶界耦合作用对石墨烯断裂行为的影响

任云鹏 曹国鑫

任云鹏, 曹国鑫. 褶皱与晶界耦合作用对石墨烯断裂行为的影响[J]. 力学学报, 2019, 51(5): 1381-1392. doi: 10.6052/0459-1879-19-181
引用本文: 任云鹏, 曹国鑫. 褶皱与晶界耦合作用对石墨烯断裂行为的影响[J]. 力学学报, 2019, 51(5): 1381-1392. doi: 10.6052/0459-1879-19-181
Ren Yunpeng, Cao Guoxin. COUPLING EFFECTS OF WRINKLES AND GRAIN BOUNDARY ON THE FRACTURE OF GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1381-1392. doi: 10.6052/0459-1879-19-181
Citation: Ren Yunpeng, Cao Guoxin. COUPLING EFFECTS OF WRINKLES AND GRAIN BOUNDARY ON THE FRACTURE OF GRAPHENE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1381-1392. doi: 10.6052/0459-1879-19-181

褶皱与晶界耦合作用对石墨烯断裂行为的影响

doi: 10.6052/0459-1879-19-181
基金项目: 1)科学技术部基金(2015GB113000);国家自然科学基金资助项目(11972258)
详细信息
    通讯作者:

    曹国鑫

  • 中图分类号: TB383.1

COUPLING EFFECTS OF WRINKLES AND GRAIN BOUNDARY ON THE FRACTURE OF GRAPHENE

  • 摘要: 由CVD方法制备的石墨烯含有大量的晶界,通常还带有许多褶皱,本文通过分子动力学方法研究了具有褶皱和晶界的石墨烯 平面拉伸断裂行为,结果显示,在垂直晶界方向,褶皱能够显著提高小角度双晶石墨烯的断裂应力,断裂应力增幅最 大约为50%,褶皱对断裂应力的影响随晶界角的增大减弱,导致双晶石墨烯断裂应力对晶界角不敏感,只略低于单晶石墨 烯,和实验结果完全吻合;在沿晶界方向,褶皱对双晶石墨烯断裂应力影响不明显. 另外,褶皱可以显著提高双晶石墨烯的断 裂应变,增幅最大约为100%. 增强机制归纳主要如下:通过面外变形,褶皱可以部分释放晶界5-7环中C---C键的预拉伸变形, 提高双晶石墨烯的断裂应力;褶皱可以降低相邻5-7环之间相互作用,导致断裂应力对晶界角不敏感;在拉伸作用下,褶皱被部分 拉平,这可以显著降低C---C键面内拉伸变形,导致断裂应变显著增大. 本研究为准确理解多晶石墨烯断裂行为提供重要帮助.

     

  • [1] Li LK, Yu YJ, Ye GJ , et al. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014,9:372-377
    [2] Radisavljevic B, Radenovic A, Brivio J , et al. Single-layer MoS$_{2}$transistors. Nature Nanotechnology, 2011,6:147-150
    [3] Schwierz F . Graphene transistors. Nature Nanotechnology, 2010,5:487-496
    [4] Eda G, Fanchini G, Chhowalla M . Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 2008,3:270-274
    [5] Georgiou T, Jalil R, Belle BD , et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nature Nanotechnology, 2013,8:100-103
    [6] Zhang L, Liu WW, Yue CG , et al. A tough graphene nanosheet/ hydroxyapatite composite with improved in vitro biocompatibility. Carbon, 2013,61:105-115
    [7] Rafiee MA, Rafiee J, Wang Z , et al. Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano, 2009,3:3884-3890
    [8] Vadukumpully S, Paul J, Mahanta N , et al. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon, 2011,49:198-205
    [9] Yu QK, Lian J, Siriponglert S , et al. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008,93(11):113103
    [10] Reina A, Jia XT, Ho J , et al. Large Area, Few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 2009,9:30-35
    [11] Novoselov KS, Geim AK, Morozov SV , et al. Electric field effect in atomically thin carbon films. Science, 2004,306:666-669
    [12] Lee GH, Cooper RC, An SJ , et al. High-strength chemical-vapor deposited graphene and grain boundaries. Science, 2013,340:1073-1076
    [13] Yazyev OV, Louie SG . Electronic transport in polycrystalline graphene. Nat Mater, 2010,9:806-809
    [14] Song ZG, Artyukhov VI, Yakobson BI , et al. Pseudo hall-petch strength reduction in polycrystalline graphene. Nano Letters, 2013,13:1829-1833
    [15] Rasool HI, Ophus C, Klug WS , et al. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat Communication, 2013,4:2811
    [16] Konakov YV , Ovid'ko IA, Sheinerman AG. Equilibrium dislocation structures at grain boundaries in subsurface areas of polycrystalline graphene and ultrafine-grained metals. Reviews on Advanced Materials Science, 2014,37:83-89
    [17] Huang PY , Ruiz-Vargas CS, van der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011,469:389
    [18] Ruiz-Vargas CS, Zhuang HLL, Huang PY , et al. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Letters, 2011,11:2259-2263
    [19] Zhang T, Li X, Gao H . Fracture of graphene: A review. International Journal of Fracture, 2015,196:1-31
    [20] Akinwande D, Brennan CJ, Bunch JS , et al. A review on mechanics and mechanical properties of 2D materials---Graphene and beyond. Extreme Mechanics Letters, 2017,13:42-77
    [21] Cao G, Gao H . Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Progress in Materials Science, 2019,103:558-595
    [22] Ren Y, Cao G . Adhesive boundary effect on free-standing indentation characterization of chemical vapor deposition graphene. Carbon, 2019,153:438-446
    [23] Lee C, Wei XD, Kysar JW , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008,321:385-388
    [24] Cao GX . Atomistic studies of mechanical properties of graphene. Polymers, 2014,6:2404-2432
    [25] Zhou L, Cao G . Nonlinear anisotropic deformation behavior of a graphene monolayer under uniaxial tension. Phys Chem Chem Phys, 2016,18:1657-1664
    [26] Rasool HI, Ophus C, Klug WS , et al. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nature Communications, 2013,4:2811
    [27] Han J, Pugno NM, Ryu S . Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials. Nanoscale, 2015,7:15672-15679
    [28] Kim K, Lee Z, Regan W , et al. Grain boundary mapping in polycrystalline graphene. ACS Nano, 2011,5:2142-2146
    [29] Grantab R, Shenoy VB, Ruoff RS . Anomalous strength characteristics of tilt grain boundaries in graphene. Science, 2010,330:946-948
    [30] Wei YJ, Wu JT, Yin HQ , et al. The nature of strength enhancement and weakening by pentagon-heptagon defects in graphene. Nat Mater, 2012,11:759-763
    [31] Liu TH, Pao CW, Chang CC . Effects of dislocation densities and distributions on graphene grain boundary failure strengths from atomistic simulations. Carbon, 2012,50:3465-3472
    [32] Han J, Ryu S, Sohn D , et al. Mechanical strength characteristics of asymmetric tilt grain boundaries in graphene. Carbon, 2014,68:250-257
    [33] Wu JT, Wei YJ . Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. Journal of the Mechanics and Physics of Solids, 2013,61(6):1421-1432
    [34] Jhon YI, Zhu SE, Ahn JH , et al. The mechanical responses of tilted and non-tilted grain boundaries in graphene. Carbon, 2012,50:3708-3716
    [35] Zhang JF, Zhao JJ, Lu JP . Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano, 2012,6:2704-2711
    [36] Zhang T, Li XY, Kadkhodaei S , et al. Flaw insensitive fracture in nanocrystalline graphene. Nano Letters, 2012,12:4605-4610
    [37] Lehtinen O, Kurasch S, Krasheninnikov AV , et al. Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation. Nat Communication, 2013,4:1-7
    [38] Teng Z, Li X, Gao H . Designing graphene structures with controlled distributions of topological defects: A case study of toughness enhancement in graphene ruga. Extreme Mechanics Letters, 2014,1:3-8
    [39] Warner JH, Margine ER, Mukai M , et al. Dislocation-driven deformations in graphene. Science, 2012,337:209-212
    [40] Ren Y, Cao G . Effect of geometrical defects on the tensile properties of graphene. Carbon, 2016,103:125-133
    [41] Plimpton S . Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 1995,117:1-19
    [42] Stuart SJ, Tutein AB, Harrison JA . A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 2000,112:6472-6486
    [43] Zhao H, Min K, Aluru NR . Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Letters, 2009,9:3012-3015
    [44] Shenderova OA, Brenner DW, Omeltchenko A , et al. Atomistic modeling of the fracture of polycrystalline diamond. Phys Rev B, 2000,61:3877-3888
  • 加载中
计量
  • 文章访问数:  989
  • HTML全文浏览量:  92
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回