EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声发射矩张量分析混凝土破坏的裂纹运动

任会兰 宁建国 宋水舟 王宗炼

任会兰, 宁建国, 宋水舟, 王宗炼. 基于声发射矩张量分析混凝土破坏的裂纹运动[J]. 力学学报, 2019, 51(6): 1830-1840. doi: 10.6052/0459-1879-19-170
引用本文: 任会兰, 宁建国, 宋水舟, 王宗炼. 基于声发射矩张量分析混凝土破坏的裂纹运动[J]. 力学学报, 2019, 51(6): 1830-1840. doi: 10.6052/0459-1879-19-170
Ren Huilan, Ning Jianguo, Song Shuizhou, Wang Zonglian. INVESTIGATION ON CRACK GROWTH IN CONCRETE BY MOMENT TENSOR ANALYSIS OF ACOUSTIC EMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1830-1840. doi: 10.6052/0459-1879-19-170
Citation: Ren Huilan, Ning Jianguo, Song Shuizhou, Wang Zonglian. INVESTIGATION ON CRACK GROWTH IN CONCRETE BY MOMENT TENSOR ANALYSIS OF ACOUSTIC EMISSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1830-1840. doi: 10.6052/0459-1879-19-170

基于声发射矩张量分析混凝土破坏的裂纹运动

doi: 10.6052/0459-1879-19-170
基金项目: 1) 国家自然科学基金资助项目(11572049)
详细信息
    通讯作者:

    宁建国

  • 中图分类号: TU375

INVESTIGATION ON CRACK GROWTH IN CONCRETE BY MOMENT TENSOR ANALYSIS OF ACOUSTIC EMISSION

  • 摘要: 从细观上看, 混凝土是一种由骨料、水泥浆基体、裂纹等组成的非均匀复合材料. 单轴准静态加载条件下, 应力应变曲线表现出明显的准脆性特征. 其变形破坏过程实质上是内部微裂纹产生、扩展和汇合的过程, 研究细观尺度的裂纹扩展演化将有助于深入了解混凝土的变形和破坏过程. 声发射作为一种物理检测方法可以获取材料内部细观损伤演化的物理信息. 本文基于声发射技术, 结合改进的时差定位算法和矩张量理论对声发射信号进行分析, 反演了混凝土巴西劈裂破坏中裂纹位置、裂纹类型以及裂纹面运动方向, 揭示了混凝土宏观拉伸破坏的细观裂纹扩展机制. 结果表明: 裂纹运动过程清晰地显示了混凝土内裂纹源首先在试件与载荷接触面附近产生, 之后聚集形成局部损伤区域, 并沿轴线向中心扩展(加载平面)以及裂纹从试件中间向表面扩展的动态过程(厚度方向); 裂纹运动体积可以作为裂纹形成、扩展过程中弹性能释放的度量, 初始裂纹成核时体积参数较小, 峰值载荷时, 裂纹运动体积最大达到$5.93\times10^{-4}$ mm$^{3}$; 混凝土宏观尺度的拉伸破坏在细观尺度上存在有拉伸裂纹、混合裂纹以及剪切裂纹; 拉伸裂纹最多, 占裂纹总数约为60%, 剪切裂纹最少, 约占裂纹总数的10%; 拉伸裂纹运动主导了试件的宏观劈裂破坏.

     

  • 1 万征, 姚仰平, 孟达 . 复杂加载下混凝土的弹塑性本构模型. 力学学报, 2016,48(5):1159-1171
    1 ( Wan Zheng, Yao Yangping, Meng Da, An elastoplastic constitutive model of concrete under complicated load. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1159-1171 (in Chinese))
    2 赵国旗, 仇亚萍, 骆英 等. 基于细观混凝土模型的时间逆转损伤成像方法. 力学学报, 2017,49(4):953-960
    2 ( Zhao Guoqi, Qiu Yaping, Luo Ying, et al. Damage detection of meso-scale concrete structures based on time reversal method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):953-960 (in Chinese))
    3 Sagar RV, Prasad RV, Prasad BKR, et al. Microcracking and fracture process in cement mortar and concrete: A comparative study using acoustic emission technique. Experimental Mechanics, 2013,53(7):1161-1175
    4 Sagasta F, Zitto ME, Piotrkowski R, et al. Acoustic emission energy b-value for local damage evaluation in reinforced concrete structures subjected to seismic loadings. Mechanical Systems and Signal Processing, 2018,102:262-277
    5 Burud NB, Kishen JMC. Application of generalized logistic equation for b-value analysis in fracture of plain concrete beams under flexure. Engineering Fracture Mechanics, 2019,210:228-246
    6 Carpinteri A, Lacidogna G, Niccolini G. Fractal analysis of damage detected in concrete structural elements under loading. Chaos Solitons & Fractals, 2009,42(4):2047-2056
    7 Carpinteri A, Corrado M, Lacidogna G. Three different approaches for damage domain characterization in disordered materials: Fractal energy density, b-value statistics, renormalization group theory. Mechanics of Materials, 2012,53:15-28
    8 Wang Z, Ning J, Ren HL. Intelligent identification of cracking based on wavelet transform and artificial neural network analysis of acoustic emission signals. Insight-Non-Destructive Testing and Condition Monitoring, 2018,60(8):426-433
    9 Wang Z, Ning J, Ren H. Frequency characteristics of the released stress wave by propagating cracks in brittle materials. Theoretical and Applied Fracture Mechanics, 2018,96:72-82
    10 Zitto ME, Piotrkowski R, Gallego A, et al. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission. Mechanical Systems and Signal Processing, 2015,60:75-89
    11 王宗炼, 任会兰, 宁建国 . 基于小波变换的混凝土压缩损伤模式识别. 兵工学报, 2017,38(9):84-92
    11 ( Wang Zonglian, Ren Huilan, Ning Jianguo. Identification of damage modes of concrete under compressive loading based on wavelet transform. Acta Armamentarii, 2017(9):84-92 (in Chinese))
    12 Sagar RV, Prasad BKR, Singh RK. Kaiser effect observation in reinforced concrete structures and its use for damage assessment. Archives of Civil and Mechanical Engineering, 2015,15(2):548-557
    13 Committee RT. Recommendation of RILEM TC 212-ACD: acoustic emission and related NDE techniques for crack detection and damage evaluation in concrete. Materials & Structures, 2010,43(9):1187-1189
    14 Prem PR, Murthy AR, Verma M. Theoretical modelling and acoustic emission monitoring of RC beams strengthened with UHPC. Construction and Building Materials, 2018,158:670-682
    15 Rasheed MA, Prakash SS, Raju G, et al. Fracture studies on synthetic fiber reinforced cellular concrete using acoustic emission technique. Construction and Building Materials, 2018,169:100-112
    16 Lacidogna G, Piana G, Carpinteri A. Damage monitoring of three-point bending concrete specimens by acoustic emission and resonant frequency analysis. Engineering Fracture Mechanics, 2019,210:203-211
    17 Han Q, Yang G, Xu J, et al. Acoustic emission data analyses based on crumb rubber concrete beam bending tests. Engineering Fracture Mechanics, 2019,210:189-202
    18 Ohtsu M. Simplified moment tensor analysis and unified decomposition of acoustic emission source: Application to in situ hydrofracturing test. Journal of Geophysical Research B, 1991,96(B4):1187-1189
    19 Ohtsu M, Shigeishi M. Virtual reality presentation of moment tensor analysis by SiGMA. J. Korean Soc. for NDT, 2003,23(3):189-199
    20 Ohtsu M, Kaminaga Y, Munwam MC. Experimental and numerical crack analysis of mixed-mode failure in concrete by acoustic emission and boundary element method. Construction and Building Materials, 1999,13(1-2):57-64
    21 Ohno K, Uji K, Ueno A, et al. Fracture process zone in notched concrete beam under three-point bending by acoustic emission. Construction and Building Materials, 2014,67:139-145
    22 Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Construction and Building Materials, 2010,24(12):2339-2346
    23 Lassaad M, Thomas S, Lindsay L. Characterization of flexural and shear cracks in reinforced concrete beams using moment tensor inversion from acoustic emission signals. Journal of Structural Engineering, 2016,143(3):1-9
    24 Chang SH, Lee CI. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. International Journal of Rock Mechanics & Mining Sciences, 2004,41(7):1069-1086
    25 Grosse CU, Finck F. Quantitative evaluation of fracture processes in concrete using signal-based acoustic emission techniques. Cement & Concrete Composites, 2006,28(4):330-336
    26 Huaizhong YU, Zhu Q, Yin X, et al. Moment tensor analysis of the acoustic emission source in the rock damage process. Progress in Natural Science: Materials International, 2005,15(7):609-613
    27 Liu JP, Li YH, Xu SD, et al. Cracking mechanisms in granite rocks subjected to uniaxial compression by moment tensor analysis of acoustic emission. Theoretical and Applied Fracture Mechanics, 2015,75:151-159
    28 Liu JP, Li YH, Xu SD, et al. Moment tensor analysis of acoustic emission for cracking mechanisms in rock with a pre-cut circular hole under uniaxial compression. Engineering Fracture Mechanics, 2015,135:206-218
    29 王启智, 李炼, 吴礼舟 等. 改进巴西试验: 从平台巴西圆盘到切口巴西圆盘. 力学学报, 2017,49(4):793-801
    29 ( Wang Qizhi, Li lian, Wu Lizhou, et al. Improvement of Brazilian test: from flattened Brazilian disc to grooved Brazilian disc. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):793-801 (in Chinese))
    30 喻勇 . 质疑岩石巴西原盘拉伸强度实验. 岩石力学与工程学报, 2005,24(7):1150-1157
    30 ( Yu Yong, Questioning the validity of the Brazalian test for determing tensile strength of rocks. Chinese Journal of Rock Mechanics and Engineering, 2005,24(7):1150-1157 (in Chinese))
    31 Ohno K, Shimozono S, Sawada Y, et al. Mechanisms of diagonal-shear failure in reinforced concrete beams analyzed by AE-SiGMA. Journal of Solid Mechanics and Materials Engineering, 2008,2(4):462-472
    32 Hampton J, Gutierrez M, Matzar L, et al. Acoustic emission characterization of microcracking in laboratory-scale hydraulic fracturing tests. Journal of Rock Mechanics and Geotechnical Engineering, 2018,10(5):805-817
    33 Geiger L. Probability method for the determination of earthquake epicenters from the arrival time only (translated from Geiger's 1910 German article). Bulletin of St Louis University, 1912,8(1):56-71
    34 王宗炼, 任会兰, 宁建国 . 基于小波变换降噪的声发射源定位方法. 振动与冲击, 2018,37(4):226-232
    34 ( Wang Zonglian, Ren Huilan, Ning Jianguo, Acoustic emission source location based on wavelet transform de-noising. Journal of Vibration and Shock, 2018,37(4):226-232 (in Chinese))
    35 Landis EN. Micro--macro fracture relationships and acoustic emissions in concrete. Construction and Building Materials, 1999,13(1-2):65-72
    36 Ohtsu M, Uddin FAKM. Mechanisms of corrosion-induced cracks in concrete at meso-and macro-scales. Journal of Advanced Concrete Technology, 2008,6(3):419-429
  • 加载中
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  108
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-01
  • 刊出日期:  2019-11-18

目录

    /

    返回文章
    返回