EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮力气泡对水平壁面的回弹动力学特性

张洋 陈科 尤云祥 盛立

张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. doi: 10.6052/0459-1879-19-071
引用本文: 张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. doi: 10.6052/0459-1879-19-071
Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. doi: 10.6052/0459-1879-19-071
Citation: Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. doi: 10.6052/0459-1879-19-071

浮力气泡对水平壁面的回弹动力学特性

doi: 10.6052/0459-1879-19-071
基金项目: 1) CSC项目(201806230204);航天先进制造联合基金项目资助.(USCAST2016-2)
详细信息
    通讯作者:

    陈科

  • 中图分类号: O359

BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL

  • 摘要: 黏性液体中的气泡浮升运动有趣而又复杂,而气泡与固壁边界的相互作用更是广泛存在于实际工程中.基于轴对称数值计算,模拟了浮力驱动下气泡在黏性液体中上升并与顶部水平固壁面碰撞、回弹的过程.采用考虑表面张力的不可压、变密度Navier-Stokes方程来描述气液两相流流动,并通过基于分级八叉树的有限体积法进行数值求解.为准确捕捉气泡在回弹过程中局部而迅速的拓扑变化,采用了动态自适应网格技术耦合流体体积法(volume of fluid,VOF)来重构气泡的形状. 从气泡对壁面的碰撞和回弹的基本现象入手,研究了伽利略数 Ga和接触速度$U_{a}$对气泡回弹动力学特性的影响, 分析了气泡碰撞过程中涡结构的变化.用回弹高度$H$、回弹周期$T$、长宽比{$A_{r}$}、浮升速度$U$、轴向位置$z$和回复系数$C_{r}$等参数来表征不同条件时气泡的运动和形状特性. 研究结果表明,气泡的回弹运动特性对 Ga十分敏感. Ga的增大可加剧气泡形变, 促进气泡的回弹运动, 增多回弹次数,增大回弹参数($T$和$H)$, 提升回复系数. 然而,接触速度并非决定气泡回弹动力学的控制参数, $U_{a}$的改变并不会改变回复系数.

     

  • [1] 李帅, 张阿漫 . 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014,63(5):054705
    [1] ( Li Shuai, Zhang Aman . Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, 2014,63(5):054705 (in Chinese))
    [2] 邱超, 张会臣 . 单个上升空泡撞击顶部壁面的变形和回弹特性研究. 机械工程学报, 2014,50(14):191-196
    [2] ( Qiu Chao, Zhang Huichen . Deformation and rebound characteristics of single rising bubble impacting against top wall. Chin[J] Mech Eng-EN, 2014,50(14):191-196 (in Chinese))
    [3] 张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(5):1050-1058
    [3] ( Zhang Yang, Chen Ke, You Yun-xiang , et al. Confinement effect on the rising dynamics of a skirted bubble. Chin J Theor Appl Mech, 2017,49:1050-1058(in Chinese))
    [4] Liu LT, Yao XL, Zhang AM , et al. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method. Phys Fluids, 2017,29(1):012105
    [5] 张阿漫, 姚熊亮 . 近壁面气泡的运动规律研究. 物理学报, 2008,57(3):1662-1671
    [5] ( Zhang Aman, Yao Xiongliang . The law of the bubble motion near the wall. Acta Physica Sinica, 2008,57(3):1662-1671 (in Chinese))
    [6] 刘海龙, 沈学峰, 王睿 等. 纳米流体液滴撞击壁面铺展动力学特性研究. 力学学报, 2018,50(5):1024-1231
    [6] ( Liu Hailong, Shen Xuefeng, Wang Rui , et al. Study on spreading characteristics of nanofluid droplet impacting on solid surface. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1024-1231 (in Chinese))
    [7] 周剑宏, 童宝宏, 王伟 , 等. 含气泡油滴撞击油膜壁面时气泡的变形与破裂. 力学学报, 2018,50(2):427-37
    [7] ( Zhou Jianhong, Tong Baohong, Wang Wei , et al. Deformation and rupture of bubble when the hollow droplet impacts on the film. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):427-437 (in Chinese))
    [8] Bhaga D, Weber ME . Bubbles in viscous liquids: Shapes, wakes and velocities. J Fluid Mech, 1981,105(-1):61-85
    [9] Sharaf DM, Premlata AR, Tripathi MK , et al. Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids, 2017,29(12):122104
    [10] Clift R, Grace JR, Weber ME. Bubbles , Drops, Particles. New York: Academic Press, 2005
    [11] 闫红杰, 赵国建, 刘柳 等. 静止水中单气泡形状及上升规律的实验研究. 中南大学学报(自然科学版), 2016,47(7):2513-2520
    [11] ( Yan Hongjie, Zhao Guojian, Liu Lin , et al. Experimental study on shape and rising behavior of single bubble in stagnant water. J Cent South Univ, 2016,47(7):2513-2520 (in Chinese))
    [12] 李帅, 孙龙泉, 张阿漫 . 水中上浮气泡动态特性研究. 物理学报, 2014,63(18):287-299
    [12] ( Li Shuai, Sun Longquan, Zhang Aman . Dynamic behavior of rising bubble. Acta Physica Sinica, 2014,63(18):287-299 (in Chinese))
    [13] 孙鹏楠, 李云波, 明付仁 . 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015,64(17):174701
    [13] ( Sun Pengnan, Li Yunbo, Ming Furen . Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015,64(17):174701 (in Chinese))
    [14] Zhang J, Ni M . What happens to the vortex structures when the rising bubble transits from zigzag to spiral? J Fluid Mech, 2017,828:353-373
    [15] Joshi JB, Nandakumar K, Evans GM , et al. Bubble generated turbulence and direct numerical simulations. Chem Eng Sci, 2017,157:26-75
    [16] Magnaudet J, Eames I . The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech, 2000,32(1):659-708
    [17] Tripathi MK, Sahu KC, Govindarajan R . Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun, 2015,6:6268
    [18] Zhang Y, Chen K, You Y , et al. Coalescence of two initially spherical bubbles: Dual effect of liquid viscosity. Int J Heat Fluid Fl, 2018,72:61-72
    [19] Tsao HK, Koch DL . Observations of high Reynolds number bubbles interacting with a rigid wall. Phys Fluids, 1997,9(9):44-56
    [20] Klasevoer E, Chevaillier J-P, Maté A , et al. Model and experiments of a drop impinging on an immersed wall. Phys Fluids, 2001,13(1):45-57
    [21] Legendre D, Daniel C, Guiraud P . Experimental study of a drop bouncing on a wall in a liquid. Phys Fluids, 2005,17(9):097105
    [22] Zenit R, Legendre D . The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Phys Fluids, 2009,21(8):083306
    [23] Kosior D, Zawala J, Malysa K . Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloid Surface A, 2014,441:88-95
    [24] Zawala J, Dabros T . Analysis of energy balance during collision of an air bubble with a solid wall. Phys Fluids, 2013,25(12):123101
    [25] Zawala J, Krasowska M, Dabros T , et al. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. Can J Chem Eng, 2007,85(5):669-78
    [26] Fujasová-Zedníková M, Vobecká L, Vejrazka J . Effect of solid material and surfactant presence on interactions of bubbles with horizontal solid surface. Can J Chem Eng, 2010,88(4):473-81
    [27] Pelletier E, Béguin C, étienne S . Experiments of air bubbles impacting a rigid wall in tap water. Phys Fluids, 2015,27(12):123302
    [28] Zhang A, Sun P, Ming F . An SPH modeling of bubble rising and coalescing in three dimensions. Comput Method Appl M, 2015,294:189-209
    [29] Wu W, Liu Y, Zhang A . Numerical investigation of 3D bubble growth and detachment. Ocean Eng, 2017,138:86-104
    [30] Canot é, Davoust L, Hammoumi ME , et al. Numerical simulation of the buoyancy-driven bouncing of a 2-D bubble at a horizontal wall. Theor Comp Fluid Dyn, 2003,17(1):51-72
    [31] Omori T, Kayama H, Tukovic Z , et al. Interface resolving simulation of bubble-wall collision dynamics//Proceedings of the International Conference on Multiphase Flow, F, 2010
    [32] Qin T, Ragab S, Yue P . Axisymmetric simulation of the interaction of a rising bubble with a rigid surface in viscous flow. Int J Multiphas Flow, 2013,52:60-70
    [33] Zawala J . ``Immortal'' liquid film formed by colliding bubble at oscillating solid substrates. Phys Fluids, 2016,28(5):057103
    [34] Albadawi A, Donoghue DB, Robinson AJ , et al. On the assessment of a VOF based compressive interface capturing scheme for the analysis of bubble impact on and bounce from a flat horizontal surface. Int J Multiphas Flow, 2014,65:82-97
    [35] Denner F . Wall collision of deformable bubbles in the creeping flow regime. Eur J Mech B-fluid, 2018,70:36-45
    [36] Zhang A, Li S, Cui J . Study on splitting of a toroidal bubble near a rigid boundary. Phys Fluids, 2015,27(6):062102
    [37] Zawala J, Kosior D, Dabros T , et al. Influence of bubble surface fluidity on collision kinetics and attachment to hydrophobic solids. Colloid Surface A, 2016,505:47-55
    [38] 史冬岩, 王志凯, 张阿漫 . 相同尺度下气泡与复杂壁面的耦合特性研究. 物理学报, 2014,63(17):533-538
    [38] ( Shi D, Wang Z, Zhang A . Study on coupling characteristics between bubble and complex walls at the same scale. Acta Physica Sinica, 2014,63(17):533-538 (in Chinese))
    [39] Ye X, Yao X, Han R . Dynamics of cavitation bubbles in acoustic field near the rigid wall. Ocean Eng, 2015,109:507-516
    [40] Popinet S . Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys, 2003,190(2):572-600
    [41] Chorin AJ . On the convergence of discrete approximations to the Navier-Stokes equations. Math Comput, 1989,23(106):35-47
    [42] Bell JB, Colella P, Glaz HM . A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys, 1989,85(2):257-283
    [43] Popinet S . An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys, 2009,228(16):5838-5866
    [44] Cano-Lozano JC, Bohorquez P, Martínez-Bazán C . Wake instability of a fixed axisymmetric bubble of realistic shape. Int J Multiphas Flow, 2013,51:11-21
    [45] Cano-Lozano JC, Martínez-Bazán C, Magnaudet J , et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys Rev Fluids, 2016,1(5):053604
    [46] Gumulya M, Joshi JB, Utikar RP , et al. Bubbles in viscous liquids: Time dependent behaviour and wake characteristics. Chem Eng Sci, 2016,144:298-309
  • 加载中
计量
  • 文章访问数:  1581
  • HTML全文浏览量:  151
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回