EI、Scopus 收录
中文核心期刊

圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟

徐建于, 黄生洪

徐建于, 黄生洪. 圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟[J]. 力学学报, 2019, 51(4): 998-1011. DOI: 10.6052/0459-1879-19-041
引用本文: 徐建于, 黄生洪. 圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟[J]. 力学学报, 2019, 51(4): 998-1011. DOI: 10.6052/0459-1879-19-041
Xu Jianyu, Huang Shenghong. NUMERICAL SIMULATION OF CYLINDRICAL CONVERGING SHOCK INDUCED RICHTMYER-MESHKOV INSTABILITY WITH SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. DOI: 10.6052/0459-1879-19-041
Citation: Xu Jianyu, Huang Shenghong. NUMERICAL SIMULATION OF CYLINDRICAL CONVERGING SHOCK INDUCED RICHTMYER-MESHKOV INSTABILITY WITH SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. DOI: 10.6052/0459-1879-19-041
徐建于, 黄生洪. 圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟[J]. 力学学报, 2019, 51(4): 998-1011. CSTR: 32045.14.0459-1879-19-041
引用本文: 徐建于, 黄生洪. 圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟[J]. 力学学报, 2019, 51(4): 998-1011. CSTR: 32045.14.0459-1879-19-041
Xu Jianyu, Huang Shenghong. NUMERICAL SIMULATION OF CYLINDRICAL CONVERGING SHOCK INDUCED RICHTMYER-MESHKOV INSTABILITY WITH SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. CSTR: 32045.14.0459-1879-19-041
Citation: Xu Jianyu, Huang Shenghong. NUMERICAL SIMULATION OF CYLINDRICAL CONVERGING SHOCK INDUCED RICHTMYER-MESHKOV INSTABILITY WITH SPH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 998-1011. CSTR: 32045.14.0459-1879-19-041

圆柱形汇聚激波诱导 Richtmyer-Meshkov不稳定的 SPH 模拟

基金项目: 1) 挑战专题TZ2016001; 国家自然科学基金(U1530125)资助项目.
详细信息
    通讯作者:

    2) 黄生洪,副教授,主要研究方向:先进SPH算法研究.E-mail: hshnpu@ustc.edu.cn

  • 中图分类号: O34

NUMERICAL SIMULATION OF CYLINDRICAL CONVERGING SHOCK INDUCED RICHTMYER-MESHKOV INSTABILITY WITH SPH

  • 摘要: 汇聚激波诱导不同物质界面的Richtmyer-Meshkov(RM)不稳定现象在惯性约束核聚变领域有重要的学术意义和工程背景.基于网格离散的宏观流体力学方法由于数值扩散问题往往需要高阶精度算法才能准确追踪界面演化,且对大变形和破碎合并等复杂界面追踪也极为困难.光滑粒子流体动力学(smoothed particlehydrodynamics,SPH)方法采用纯拉格朗日算法,可以有效克服上述难点.但经典SPH算法需采用人工黏性处理强间断,在激波间断处往往会出现严重的非物理振荡,对于涉及强冲击不稳定性问题,很难达到理想的模拟效果.本文采用基于HLL黎曼求解器的SPH算法,实现了对强激波和大密度比物质界面的有效分辨和追踪.一维数值校核证明了代码的可靠性、健壮性,并进一步模拟了二维圆柱形汇聚冲击波冲击四边形轻/重气界面诱导的RM不稳定性问题,与已有实验结果进行了对比,发现模拟结果与实验结果吻合.通过分析界面演化过程中的密度及压力变化,发现本文所采用的方法可准确地追踪激波与界面作用的复杂界面和波系演化规律.研究结果为进一步理解和解释汇聚冲击条件下的RM不稳定性机理奠定了基础.
    Abstract: The Richtmyer-Meshkov (RM) instability induced by converging shock waves at interfaces of different substances has an important academic significance and engineering background in the field of inertial confinement fusion. The macroscopic fluid dynamics method based on grid discretization requires high order precision algorithm to track the interface evolution accurately because of numerical diffusion problem, and it is extremely difficult to track the complex interface evolution such as large deformation and fragmentation merging, etc. Smoothed particle hydrodynamics (SPH) method is a pure Lagrangian algorithm, which can effectively overcome the addressed difficulties. However, the classical SPH algorithm requires artificial viscosity to smooth the strong discontinuities, otherwise large non-physical oscillations may occur. For the problem involving strong shock instability, it is difficult to achieve ideal results. In this paper, the SPH algorithm based on HLL Riemann solver is adopted to effectively distinguish and track the strong shock wave and the material interface with a large density ratio. The reliability and robustness of the code were validated by four classical 1D shock tube tests, and it is found that the smoothing effect of the density algorithm used by SPH on the contact discontinuity can be improved by reducing the initial particle spacing. The smaller the initial particle spacing, the higher the numerical simulation accuracy, but it cannot be completely eliminated. However, the position of the interface is actually marked by the media properties of the particles, and does not affect the discrimination of the interface position under the SPH Lagrangian algorithm. Then the 2D cases of RM instability induced by cylindrical converging shock wave impacting at the quadrilateral light/heavy gas interface were simulated. It is found that the simulation results are quantitatively in good agreement with the existing experimental results. By analyzing the density and pressure changes in the process of interface evolution, it is also found that the models and methods adopted can accurately track the complex interfaces and shock waves evolution patterns during the RM instability process. The relevant results lay a foundation for further understanding and explanation of RM instability mechanism under extreme converging shock conditions.
  • Yang J, Kubota T, Zukoski EE.Applications of shock-induced mixing to supersonic combustion. AIAA Journal, 1993, 31(5): 854-862
    沙莎,陈志华, 薛大文等.激波与SF$_{6}$梯形气柱相互作用的数值模拟. 物理学报, 2014, 63(8): 085205
    (Sha Sha, Chen Zhihua, Xue Dawen, et al.Numerical investigations on the interaction of shock waves with spherical SF$_{6}$ bubbles. Acta Physica Sinica, 2014, 63(8):085205(in Chinese))
    Lindl JD, McCrory RL, Campbell EM. Progress toward ignition and burn propagation in inertial confinement fusion. Physics Today, 1992, 45(9): 32-40
    Richtmyer RD.Taylor instability in shock acceleration of compressible fluids. Communications on Pure and Applied Mathematics, 1960, 13(2): 297-319
    Meshkov EE.Instability of the interface of two gases accelerated by a shock wave. Fluid Dynamics, 1969, 4(5): 101-104
    Takayama K, Kleine H, Grönig H.An experimental investigation of the stability of converging cylindrical shock waves in air. Experiments in Fluids, 1987, 5(5): 315-322
    Hosseini SHR, Takayama K.Experimental study of Richtmyer-Meshkov instability induced by cylindrical shock waves. Physics of Fluids, 2005, 17(8): 084101
    Hosseini SHR, Takayama K.Experimental study of toroidal shock wave focusing in a compact vertical annular diaphragmless shock tube. Shock Waves, 2010, 20(1): 1-7
    Benjamin RF, Fritz JN.Shock loading a rippled interface between liquids of different densities. Physics of Fluids, 1987, 30(2): 331-336
    Zhai ZG, Liu CL, Qin FH, et al.Generation of cylindrical converging shock waves based on shock dynamics theory. Physics of Fluids, 2010, 22(4): 041701
    Zhai ZG, Si T, Luo XS, et al.Parametric study of cylindrical converging shock waves generated based on shock dynamics theory. Physics of Fluids, 2012, 24(2): 026101
    Luo XS, Si T, Yang JM, et al.A cylindrical converging shock tube for shock-interface studies. Review of Scientific Instruments, 2014, 85(1): 015107
    Si T, Long T, Zhai ZG, et al.Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. Journal of Fluid Mechanics, 2015, 784: 225-251
    Luo XS, Ding JC, Wang MH, et al.A semi-annular shock tube for studying cylindrically converging Richtmyer-Meshkov instability. Physics of Fluids, 2015, 27(9): 091702
    Lei F, Ding JC, Si T, et al.Experimental study on a sinusoidal air/SF$_{6}$ interface accelerated by a cylindrically converging shock. Journal of Fluid Mechanics, 2017, 826: 819-829
    Ding JC, Si T, Yang JM, et al.Measurement of a Richtmyer-Meshkov instability at an air-SF$_{6}$ interface in a semiannular shock tube. Physical Review Letters, 2017, 119(1): 014501
    Tian BL, Fu DX, Ma YW.Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks. Acta Mechanica Sinica, 2006, 22(1): 9-16
    Zhang Q, Graham MJ.Anumerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Physics of Fluids, 1998, 10(4): 974-992
    Lombardini M, Pullin DI, Meiron DI.Turbulent mixing driven by spherical implosions. Part 1. Flow description and mixing-layer growth. Journal of Fluid Mechanics, 2014, 748: 85-112
    Lombardini M, Pullin DI, Meiron DI.Turbulent mixing driven by spherical implosions. Part 2. Turbulence statistics. Journal of Fluid Mechanics, 2014, 748: 113-142
    刘双兵, 刘海湖. 亚网格尺度稳定化有限元求解不可压黏性流动. 力学学报, 2011, 43(6): 1083-1090
    (Liu Shuangbing, Liu Haihu.Subgrid scale stabilized finite element for solution of incompressible viscous flows. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1083-1090 (in Chinese))
    李聪洲, 张新曙, 胡晓峰等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(2): 233-243
    (Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al.The Study of flow past multiple cylinders at high Reynolds numbers. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 233-243 (in Chinese))
    及春宁, 花阳, 许栋等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018, 50(1): 21-31
    (Ji Chunning, Hua Yang, Xu Dong, et al.Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 21-31 (in Chinese))
    程志林, 宁正福, 曾彦等. 格子Boltzmann 方法模拟多孔介质惯性流的边界条件改进. 力学学报, 2019, 51(1): 124-134
    (Cheng Zhilin, Ning Zhengfu, Zeng Yan, et al.A lattice boltzmann simulation of fluid flow in porous media using a modified boundary condition. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 124-134 (in Chinese))
    袁国强, 李颖晖. 二维稳定流形的自适应推进算法. 力学学报, 2018, 50(2): 405-414
    (Yuan Guoqiang, Li Yinghui.Adaptive front advancing algorithm for computing two-dimensional stable manifolds. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 405-414 (in Chinese))
    何涛. 基于ALE 有限元法的流固耦合强耦合数值模拟. 力学学报, 2018, 39(2): 1549-1561
    (He Tao.A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary Lagrangian-Eulerian finite element formulation. Chinese Journal of Theoretical and Applied Mechanics, 2018, 39(2): 1549-1561 (in Chinese))
    张雄, 刘岩. 无网格法. 北京:清华大学出版社, 2004
    (Zhang Xiong, Liu Yan. Meshless Method.Beijing: Tsinghua University Press, 2004 (in Chinese))
    潘徐杰, 张怀新, 孙学尧. 基于大涡模拟的移动粒子半隐式法研究.力学学报, 2011, 43(3): 616-620
    (Pan Xujie, Zhang Huaixin, Sun Xueyao.Moving-particle semi-implicit method research based on large eddy simulation. Chinese Journal of Theoretical and Applied Mechanics , 2011, 43(3): 616-620 (in Chinese))
    刘硕, 方国东, 王兵等. 近场动力学与有限元方法耦合求解热传导问题.力学学报,2018,50(2): 339-348
    (Liu Shuo, Fang Guodong, Wang Bing, et al.Study of thermal conduction problem using coupled peridynamics and finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348 (in Chinese))
    朱跃, 姜胜耀, 杨星团等. 粒子法中压力振荡的机理研究. 力学学报,2018, 50(3): 688-698
    (Zhu Yue, Jiang Shengyao, Yang Xingtuan, et al.Mechanism analysis of pressure oscillation in particle method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 688-698 (in Chinese))
    Lucy LB.A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82: 1013-1024.
    Gingold RA, Monaghan JJ.Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 1977, 181(3): 375-389.
    贝新源,岳宗五.平滑粒子流体动力学(一种数值模拟方法).高科技研究中的数值计算.长沙:国防科技大学出版社,1995
    (Bei Xinyuan, Yue Zongwu.Smooth particle hydrodynamics (a numerical simulation method). Numerical calculations in high-tech research. Changsha: National University of Defense Technology Press, 1995(in Chinese))
    张锁春. 光滑质点流体动力学 (SPH) 方法 (综述). 计算物理, 1996, 13(4): 385-397
    (Zhang Suochun.Smooth particle hydrodynamics(SPH) method(Review). Chinese Journal of Computational Physics, 1996, 13(4): 385-397(in Chinese))
    贝新源, 岳宗五. 三维SPH 程序及其在斜高速碰撞问题的应用. 计算物理, 1997, 14(2): 155-166
    (Bei Xinyuan, Yue Zongwu.Three-dimensional SPH algorithm and its application in oblique high-speed collision problem. Chinese Journal of Computational Physics, 1997, 14(2): 155-166(in Chinese))
    蔡清裕,崔伟峰,向东等.运用有限元及SPH相结合的方法模拟刚性弹丸侵彻混凝土.爆炸与冲击,2003, 23(增刊):233-234
    (Cai Qingyu, Cui Weifeng, Xiang Dong, et al.The rigid projectile penetration in concrete is simulated by using the method of finite element and SPH. Explosion and Shock Waves, 2003, 23(Sup): 233-234(in Chinese))
    李金柱,张庆明,龙仁荣.超高速碰撞现象的SPH数值方法模拟.爆炸与冲击, 2003, 23(增刊):231-232
    (Li Jinzhu, Zhang Qingming, Long Renrong.SPH numerical simulation of superfast collision phenomena. Explosion and Shock Waves, 2003, 23(Sup): 231-232(in Chinese))
    孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701
    (Sun Pengnan, Li Yunbo, Ming Furen.Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015, 64(17): 174701 (in Chinese))
    闫蕊,徐绯,任选其. SPH方法研究空气在平板入水中的影响.计算力学学报,2017, 34(5): 564-569
    (Yan Rui, Xu Fei, Ren Xuanqi.Research on the effects of air during flat plate impacting with water using SPH method. Chinese Journal of Computational Mechanics, 2017, 34(5): 564-569(in Chinese))
    饶登宇, 白冰, 陈佩佩. 基于SPH 方法的非饱和多孔介质相变耦合研究. 岩土力学, 2018, 39(12): 4527-4536
    (Rao Dengyu, Bai Bing, Chen Peipei.Simulation of hydro-thermal coupling with phase-change in unsaturated porous media by SPH method. Rock and Soil Mechanics, 2018, 39(12): 4527-4536(in Chinese))
    任选其,徐绯,张显鹏等.基于SPH/FEM 方法的浅水冲击喷溅及其抑制结构研究.计算力学学报,2018, 35(6): 769-776
    (Ren Xuanqi, Xu Fei, Zhang Xianpeng, et al.Reasearch on the water spray gnerated by shallow water impact and its suppression structure by using the SPH/FEM method. Chinese Journal of Computational Mechanics, 2018, 35(6): 769-776(in Chinese))
    孙红. 基于SPH算法的果园开沟刀具土壤切削过程仿真及试验.中国农机化学报, 2019, 40(3): 190-194
    (Sun Hong.Simulation and experimental study of soil cutting process by ditching component in orchard. Journal of Chinese Agricultural Mechanization, 2019, 40(3): 190-194(in Chinese))
    何鲜峰, 汪自力, 张健锋等. 基于SPH 的大坝泄流过程仿真分析. 中国科学: 技术科学, 2019, 49(1): 109-114
    (He Xianfeng, Wang Zili, Zhang Jianfeng, et al.Simulation analysis of dam discharge process based on smooth particle hydrodynamics (SPH). Scientia Sinica Techologica, 2019, 40(1): 109-114 (in Chinese))
    Parshikov AN, Medin SA, Loukashenko II, et al.Improvements in SPH method by means of interparticle contact algorithm and analysis of perforation tests at moderate projectile velocities. International Journal of Impact Engineering, 2000, 24(8): 779-796
    徐志宏, 汤文辉, 张若棋. 基于黎曼解的粒子间接触算法在 SPH 中的应用. 高压物理学报, 2006, 20(1): 93-96
    (Xu Zhihong, Tang Wenhui, Zhang Ruoqi.Application of interparticle contact algorithm based on Riemann solution in SPH. Chinese Journal of High Pressure Physics, 2006, 20(1): 93-96(in Chinese))
    Hu XY, Adams NA, Iaccarino G.On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. Journal of Computational Physics, 2009, 228(17): 6572-6589
    Rogers BD, Dalrymple RA, Stansby PK.Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 2010, 48(Sup1): 135-141
    Sirotkin FV, Yoh JJ.A smoothed particle hydrodynamics method with approximate Riemann solvers for simulation of strong explosions. Computers & Fluids, 2013, 88: 418-429
    Monaghan JJ.Simulating free surface flows with SPH. Journal of Computational Physics, 1994, 110(2): 399-406
    Monaghan JJ.SPH and Riemann solvers. Journal of Computational Physics, 1997, 136(2): 298-307
    Cha SH, Whitworth AP.Implementations and tests of Godunov-type particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2003, 340(1): 73-90
    Han ZY, Yin XZ. Shock Dynamics.Dordrecht: Kluwer Academic Publishers and Science Press, 1993
  • 期刊类型引用(5)

    1. 李宏杨,热合买提江·依明. 修正KDF-SPH方法的激波问题数值模拟. 应用数学和力学. 2024(12): 1483-1493 . 百度学术
    2. 党子涵,郑纯,张焕好,陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报. 2022(21): 270-282 . 百度学术
    3. 王璐,徐绯,杨扬. 完全拉格朗日SPH在冲击问题中的改进和应用. 力学学报. 2022(12): 3297-3309 . 本站查看
    4. 崔竹轩,丁举春,司廷. 反射激波作用下三维凹气柱界面演化的数值研究. 力学学报. 2021(05): 1246-1256 . 本站查看
    5. 汪洋,董刚. RM不稳定过程中预混火焰界面演化及混合区增长预测. 力学学报. 2020(06): 1655-1665 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数:  1817
  • HTML全文浏览量:  424
  • PDF下载量:  157
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-01-31
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回