EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子辐照金属材料的脆化模型研究

叶想平 刘仓理 蔡灵仓 胡昌明 俞宇颖 胡凌

叶想平, 刘仓理, 蔡灵仓, 胡昌明, 俞宇颖, 胡凌. 中子辐照金属材料的脆化模型研究[J]. 力学学报, 2019, 51(5): 1538-1544. doi: 10.6052/0459-1879-19-025
引用本文: 叶想平, 刘仓理, 蔡灵仓, 胡昌明, 俞宇颖, 胡凌. 中子辐照金属材料的脆化模型研究[J]. 力学学报, 2019, 51(5): 1538-1544. doi: 10.6052/0459-1879-19-025
Ye Xiangping, Liu Cangli, Cai Lingcang, Hu Changming, Yu Yuying, Hu Ling. A MODEL OF NEUTRON IRRADIATION EMBRITTLEMENT FOR METALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1538-1544. doi: 10.6052/0459-1879-19-025
Citation: Ye Xiangping, Liu Cangli, Cai Lingcang, Hu Changming, Yu Yuying, Hu Ling. A MODEL OF NEUTRON IRRADIATION EMBRITTLEMENT FOR METALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1538-1544. doi: 10.6052/0459-1879-19-025

中子辐照金属材料的脆化模型研究

doi: 10.6052/0459-1879-19-025
基金项目: 1)国家自然科学基金资助项目(11772312)
详细信息
    通讯作者:

    叶想平,刘仓理

    叶想平,刘仓理

  • 中图分类号: O346.1$^+$1

A MODEL OF NEUTRON IRRADIATION EMBRITTLEMENT FOR METALS

  • 摘要: 金属材料的辐照脆化问题一直以来都是核能安全领域亟待解决的关键问题之一.为了更准确地预测金属材料的辐照脆化行为,基于Johnson-Cook本构模型,将未辐照金属材料的断裂真应力取作辐照材料的断裂真应力,建立了通过辐照退火态金属材料屈服强度就能够预测其整个真应力$\!$-$\!$-$\!$应变曲线,以及断裂真应变的辐照脆化模型.实验研究了不同中子剂量辐照退火态高纯铝的准静态拉伸真应力$\!$-$\!$-$\!$应变曲线、断裂真应力和断裂真应变随辐照剂量的变化规律.结果表明,辐照剂量越高,高纯铝的屈服强度越高,断裂真应变越低,但断裂真应力几乎不变.通过TEM显微分析获得了高纯铝内部辐照缺陷的尺寸和数密度随辐照剂量的变化规律,结果表明,辐照剂量越高,孔洞的尺寸和数密度越高,但位错环尺寸和数密度始终很小,难以准确统计.由辐照高纯铝实验数据拟合得到了辐照脆化模型所需参数,并检验了该模型的预测效果.结果表明,无论是通过实验还是显微分析得到辐照高纯铝的屈服强度,模型的预测结果均能够与实验结果较好地吻合,且模型对退火态高纯铝临界中子剂量的预测值也与文献结果一致.

     

  • [1] RSEM. In-service inspection rules for the mechanical components of PWR nuclear islands, Addendum 2005. France: French Society for Design, 2005
    [2] De Vries PC, Pautasso G, Humphreys D , et al. Requirements for triggering the iter disruption mitigation system. Fusion Science and Technology, 2016,69(2):471-484
    [3] 肖厦子, 宋定坤, 楚海建 等. 金属材料力学性能的辐照硬化效应. 力学进展, 2015,45(1):141-178
    [3] ( Xiao Xiazi, Song Dingkun, Chu Haijian , et al. Irradiation hardening for metallic materials. Advances in Mechanics, 2015,45(1):141-178 (in Chinese))
    [4] Zinkle SJ, Was GS . Materials challenges in nuclear energy. Acta Materialia, 2013,61(3):735-758
    [5] Singh BN. Edwards DJ, Toft P . Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper. Journal of Nuclear Materials, 2001,299(3):205-218
    [6] Chen ZA, Wang LY, Chao YJ , et al. A constraint-equivalent approach for assessing fracture toughness of RPV steels under neutron irradiation. Nuclear Engineering and Design, 2012,250:53-59
    [7] Ilchuk N, Spatig P, Odette GR . Fracture toughness characterization in the lower transition of neutron irradiated Eurofer97 steel. Journal of Nuclear Materials, 2013,442(1-3):58-61
    [8] Odette GR, Alinger MJ, Wirth BD . Recent developments in irradiation-resistant steels. Annual Review of Materials Research, 2008,38(1):471-503
    [9] Nuclear reactor pressure vessel structural material surveillance test method, JEAC 4201. Janpan: JEAC,1991
    [10] 乔建生, 尹世忠, 杨文 . 反应堆压力容器材料辐照脆化预测模型研究. 核科学与工程, 2012,32(2):143-149
    [10] ( Qiao Jiansheng, Yin Shizhong, Yang Wen . Study on models for RPV materials irradiation embrittlement prediction. Chinese Journal of Nuclear Science and Engineering, 2012,32(2):143-149 (in Chinese))
    [11] 文龙飞, 王理想, 田荣 . 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018,50(3):599-610
    [11] ( Wen Longfei, Wang Lixiang, Tian Rong. Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):599-610 (in Chinese))
    [12] 杨文斗. 反应堆材料学. 原子能出版社, 2001
    [13] Tanona PA, Grandeman GJ , Houssinb, et al. French verification of PWR vessel integrity, NP26713, 1990
    [14] Amayev AD, Kryukov AM, Levit VI , et al. Radiation stability of WWER-440 vessel materials. Radiation Embrittlement of Unclear Reactor Pressure Vessel Steels: An International Review (fourth volume), 1993,1170(9):9-29
    [15] Maricchiolo C, Milella PP, Pini A . Prediction of reference transition temperature increase due to neutron irradiation exposure. ASTM-STP-909, 1984: 96-105
    [16] Eason ED . Consultant, modeling and computing services to the ASTM E10 meeting. 2007
    [17] Eason ED, Odette GR, Wright JE . Improved embrittlement core-lations for reactor pressure vessel steels. Nuclear Regulatory Commission, Wastington D C, 1998
    [18] 王荣山, 徐超亮, 黄平 等. 反应堆压力容器钢的辐照脆化预测模型研究. 原子能科学技术, 2014,48(10):1862-1866
    [18] ( Wang Rongshan, Xu Chaoliang, Huang Ping , et al. Study on prediction model of irradiation embrittlement for reactor pressure vessel steel. Atomic Energy Science and Technology, 2014,48(10):1862-1866 (in Chinese))
    [19] 于思淼, 蔡力勋, 姚迪 等. 准静态条件下金属材料的临界断裂准则研究. 力学学报, 2018,50(5):1063-1080
    [19] ( Yu Simiao, Cai Lixun, Yao Di , et al. On the degrees of freedom of a mechanical system. Chinese Journal of Theoretical and Applied Mechanics, 50(5):1063-1080 (in Chinese))
    [20] 高江平, 杨华, 蒋宇飞 等. 三剪应力统一强度理论研究. 力学学报, 2017,49(6):1322-1334
    [20] ( Gao Jiangping, Yang Hua, Jiang Yufei , et al. Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1322-1334 (in Chinese))
    [21] Byun TS, Farrell K . Plastic instability in polycrystalline metals after low temperature irradiation. Acta Materialia, 2004,52(6):735-758
    [22] Byun TS, Farrell K , Hashimoto N. Plastic instability behavior of bcc and hcp metals after low temperature neutron irradiation. Journal of Nuclear Materials, 2004, 329- 333(B):998-1002
    [23] Byun TS, Farrell K, Li MM . Deformation in metals after low temperature irradiation Part I--Mapping macroscopic deformation modes on true stress dose plane. Acta Materialia, 2008,56(5):1044-1055
    [24] Byun TS, Farrell K, Li MK . Deformation in metals after low-temperature irradiation Part II-- Irradiation hardening, strain hardening, and stress ratios. Acta Materialia, 2008,56(5):1056-1064
    [25] Byun TS . Dose dependence of true stress parameters in irradiated bcc, fcc, and hcp metals. Journal of Nuclear Materials, 2007,361(2-3):239-247
    [26] Robach JS, Robertson IM, Wirth BD , et al. In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philosophical Magazine, 2003,83(8):955-967
    [27] Arsenlis A, Wirth BD, Rhee M . Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philosophical Magazine, 2004,84(34):3617-3635
    [28] Liang RQ, Khan AS . A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures. International Journal of Plasticity, 1999,15(9):963-980
    [29] Victoria M, Baluc N, Bailat C , et al. The Microstructure and Associated Tensile Properties of Irradiated fcc and Bcc Metals. Journal of Nuclear Materials, 2000,276(1-3):114-122
    [30] Singh BN, Zinkle SJ . Defect accumulation in pure fcc metals in the transient regime: A review. Journal of Nuclear Materials, 1993,206:212-229
    [31] Flament C, Ribis J, Garnier J , et al. Stability of $\beta"$nano-phases in Al-Mg-Si(-Cu) alloy under high dose ion irradiation. Acta Materialia, 2017,128(1):64-76
    [32] Renault LA, Garnier J, Malaplate J , et al. Evolution of microstructure after irradiation creep in several austenitic steels irradiated up to 120,dpa at 320$^\circ$C. Journal of Nuclear Materials, 2016,475(1):209-226
    [33] Byun TS, Li M, Farrell K . Dose dependence of strength after low-temperature irradiation in metallic materials. Metallurgical and Materials Transactions A, 2013,44:85-94
    [34] Mondolfo LF. Aluminum Alloys: Structure and Properties. The Whitefriars Press, 1976: 72
    [35] Packan NH . Fluence and flux dependence of void formation in pure aluminum. Journal of Nuclear Materials, 1971,40(1):1-16
  • 加载中
计量
  • 文章访问数:  1343
  • HTML全文浏览量:  276
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-18
  • 刊出日期:  2019-09-18

目录

    /

    返回文章
    返回