EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航行体回收垂直入水空泡流场及水动力特性研究

张佳悦 李达钦 吴钦 黄彪 刘影

张佳悦, 李达钦, 吴钦, 黄彪, 刘影. 航行体回收垂直入水空泡流场及水动力特性研究[J]. 力学学报, 2019, 51(3): 803-812. doi: 10.6052/0459-1879-18-364
引用本文: 张佳悦, 李达钦, 吴钦, 黄彪, 刘影. 航行体回收垂直入水空泡流场及水动力特性研究[J]. 力学学报, 2019, 51(3): 803-812. doi: 10.6052/0459-1879-18-364
Jiayue Zhang, Daqin Li, Qin Wu, Biao Huang, Ying Liu. NUMERICAL INVESTIGATION ON CAVITY STRUCTURES AND HYRODYNAMICS OF THE VEHICLE DURING VERTICAL WATER-ENTRY1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803-812. doi: 10.6052/0459-1879-18-364
Citation: Jiayue Zhang, Daqin Li, Qin Wu, Biao Huang, Ying Liu. NUMERICAL INVESTIGATION ON CAVITY STRUCTURES AND HYRODYNAMICS OF THE VEHICLE DURING VERTICAL WATER-ENTRY1) [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 803-812. doi: 10.6052/0459-1879-18-364

航行体回收垂直入水空泡流场及水动力特性研究

doi: 10.6052/0459-1879-18-364
基金项目: 1) 国家自然科学基金重点项目(51839001),装备预研领域基金项目(61402070401,61402070501),博士后创新人才支持新计划(BX201700126),中国博士后科学基金(2017M620043)和西华大学重点实验室开放基金项目资助.
详细信息
    通讯作者:

    吴钦

  • 中图分类号: O352;

NUMERICAL INVESTIGATION ON CAVITY STRUCTURES AND HYRODYNAMICS OF THE VEHICLE DURING VERTICAL WATER-ENTRY1)

  • 摘要: 航行体以尾部向下姿态入水过程的研究对无动力运载体以及导弹回收等问题的解决具有重要意义. 本文采用VOF (volume offluid)多相流模型,并结合动网格技术,对航行体尾部向下姿态高速垂直入水过程展开研究.数值计算结果与实验[12]吻合度较好,验证了本文所采用数值方法的准确性与可行性.以航行体为研究对象,分析了航行体垂直入水过程中流体动力、入水空泡及流场结构的演变特性,进而讨论了入水速度对流体动力特性和入水空泡的影响规律. 研究结果表明:在航行体入水过程中主要受到压差阻力的影响,在入水冲击阶段,航行体所受阻力系数在撞击自由液面时达到最大,随着入水时间的推移,总阻力系数缓慢降低,最终趋于稳定,空泡发生溃灭时产生微小波动.在入水空泡发展的过程中,在惯性力与内外压差的共同作用下,空泡壁面会同时存在扩张与收缩两种阶段.航行体垂直入水过程中阻力系数峰值随着入水速度的增大而增大,且随着速度的增大,空泡最大直径以及空泡收缩速率增大.空泡面闭合无量纲时间以及深闭合时入水空泡夹断深度与入水深度的比值随弗劳德数变化基本不变.

     

  • [1] 鲁宇, 汪小卫, 高朝辉等.重复使用运载火箭技术进展与展望. 导弹与航天运载技术, 2017(5): 1-7
    [1] (Lu Yu, Wang Xiaowei, Gao Chaohui, et al.Progress and prospect of reusable launch vehicle technology. Missiles and Space Vehicles, 2017(5): 1-7 (in Chinese))
    [2] 王芳, 程洪玮, 彭博. "猎鹰9" 运载火箭海上平台成功回收的分析及启示. 装备学院学报, 2016(6): 69-74
    [2] (Wang Fang, Cheng Hongwei, Peng Bo.Analysis and enlightenment of successful retrieval of "Falcon 9" rocket on offshore platform. Journal of Equipment Academy, 2016(6): 69-74 (in Chinese))
    [3] 王永虎, 石秀华.入水冲击问题研究的现状与进展. 爆炸与冲击, 2008, 28(3): 276-282
    [3] (Wang Yonghu, Shi Xiuhua.Review on research and development of water-entry impact problem. Explosion and Shock Waves, 2008, 28(3): 276-282 (in Chinese))
    [4] 秦洪德,赵林岳,申静. 入水冲击问题综述. 哈尔滨工业大学学报, 2011 (S1): 152-157
    [4] (Qin Hongde, Zhang Linyue, Shen Jin.Review of water entry problem. Journal of Harbin Institute of Technology, 2011 (S1): 152-157 (in Chinese))
    [5] 王瑞,赵博伟,刘珂等. 高速射弹入水稳定性研究现状与分析. 火炮发射与控制学报, 2018(2): 99-104
    [5] (Wang Rui, Zhao Bowei, Liu Ke, et al.Research status of the stability of high-speed projectile's water-entry process and its analysis. Journal of Gun Launch & Control, 2018(2): 99-104 (in Chinese))
    [6] Truscott TT, Epps BP, Belden J.Water Entry of Projectiles. Annual Review of Fluid Mechanics, 2014, 46(1): 355-378
    [7] Worthington AM, Cole RS.Impact with a liquid surface studied by the aid of instantaneous photograph. Philosophical Transactions of the Royal Society, 1900, 194(A):175-200
    [8] Worthington AM, Cole RS.A Study of Splashes. New York: Longmans Green and Company, 1908
    [9] Logvinovich GV.Hydrodynamics of free-boundary flows. Jerusalem: Israel Program for Scientific Translation, 1972: 103-113
    [10] Karman TV.The impact of seaplane float during landing. NACA TN321, 1929
    [11] Aristoff JM, Bush JWM.Water entry of small hydrophobic spheres. Journal of Fluid Mechanics, 2009, 619: 45
    [12] Aristoff J, Truscott T, Techet A, et al.The water entry of decelerating spheres. Physics of Fluids, 2010, 22(3): 70-340
    [13] Abraham J, Gorman J, Reseghetti F, et al.Modeling and numerical simulation of the forces acting on a sphere during early water entry. Ocean Engineering, 2014, 76: 1-9
    [14] Alaoui AEM, Nême A, Tassin A, et al.Experimental study of coefficients during vertical water entry of axisymmetric rigid shapes at constant speeds. Applied Ocean Research, 2012, 37(37): 183-197
    [15] 张效慈,顾懋祥,程贯一. 平头旋转壳撞水水弹性实验的研究. 实验力学, 1989(4): 388-394
    [15] (Zhang Xiaoci, Gu Maixing, Cheng Guanyi.Investigation of hydroelastic effect by dropping blunt conical shell into a water basin. Journal of Experimental Mechanics, 1989(4): 388-394 (in Chinese))
    [16] 路中磊, 孙铁志, 魏英杰等. 开放空腔壳体倾斜入水运动特性试验研究. 力学学报, 2018, 50(2): 263-273
    [16] (Lu Zhonglei, Sun Tiezhi, Wei Yingjie, et al. Experimental investigation on the motion feature of inclined water-entry of a semi-closed cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 263-273 (in Chinese))
    [17] 杜特专,王一伟,黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [17] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
    [18] 胡明勇, 张志宏, 刘巨斌等.低亚声速射弹垂直入水的流体与固体耦合数值计算研究. 兵工学报, 2018(3): 560-568
    [18] (Hu Mingyong, Zhang Zhihong, Liu Jubin, et al.Fluid-solid coupling numerical simulation on vertical water entry of projectile at low subsonic speed. Acta Armamentarii, 2018(3): 560-568 (in Chinese))
    [19] 吴钦, 王国玉, 黄彪. 绕振荡水翼流动及其转捩特性的数值计算研究. 力学学报, 2014, 46(1): 60-69
    [19] (Wu Qin, Wang Guoyu, Huang Biao.Numerical methods and transition investigation of transition flows around a pitching hydrofoil. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 60-69 (in Chinese))
    [20] Nair P, Tomar G.A study of energy transfer during water entry of solids using incompressible SPH simulations. Sadhana, 2017, 42(4): 1-15
    [21] Jalalisendi M, Porfiri M.Water entry of compliant slender bodies: theory and experiments. International Journal of Mechanical Sciences, 2017, 149: 514-529
    [22] 吴钦, 黄彪, 王国玉等. 基于完全耦合算法的绕水翼流固耦合特性研究. 船舶力学, 2017 (7): 804-813
    [22] (Wu Qin, Huang Biao, Wang Guoyu, et al.Fluid structure interaction analysis of a hydrofoil based on fully coupled algorithm. Journal of Ship Mechanics, 2017 (7): 804-813 (in Chinese))
    [23] 苏健,田海,姜楠. 逆向涡对超疏水壁面减阻影响的TRPIV实验研究. 力学学报, 2016, 48(5): 1033-1039
    [23] (Su Jian, Tian Haiping, Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039 (in Chinese))
    [24] Gaudet S.Numerical simulation of circular disks entering the free surface of a fluid. Physics of Fluids, 1998, 10(9): 2489-2499
    [25] Shi HH, Takuya T.Hydrodynamic behavior of an underwater moving body after water enter. Acta Mechanica Sinica, 2001, 17(1): 35-44
    [26] Shi HH, Kume M.Underwater acoustics and cavitating flow of water entry. Acta Mechanica Sinica, 2004, 20(4): 374-382
    [27] Erfanian MR, Anbarsooz M, Rahimi N, et al.Numerical and experimental investigation of a three dimensional spherical-nose projectile water entry problem. Ocean Engineering, 2015, 104: 397-404
    [28] Areti K, Ruben P, Yue DKP.Numerical investigation of the water entry of cylinders without and with spin. Journal of Fluid Mechanics, 2017, 814: 131-164
    [29] Iranmanesh A, Passandideh Fard M.A three-dimensional numerical approach on water entry of a horizontal circular cylinder using the volume of fluid technique. Ocean Engineering, 2017, 130: 557-566
    [30] Ji B, Luo XW, Peng XX, et al.Numerical investigation of the ventilated cavitating flow around an under-water vehicle based on a three-component cavitation model. Journal of Hydrodynamics, 2010, 22(6): 753-759
    [31] 何春涛, 王聪, 闵景新等. 回转体匀速垂直入水早期空泡数值模拟研究. 工程力学, 2012, 29(4): 237-243
    [31] (He Chuntao, Wang Cong, Min Jingxin, et al.Numerical simulation of early air-cavity of cylinder cone with vertical water-entry. Engineering Mechanics, 2012, 29(4): 237-243 (in Chinese))
    [32] May A, Woodhull Jean C. Drag coefficients of steel spheres entering water vertically. Journal of Applied Physics, 1948, 19: 1109-1121
    [33] 王易君, 李明海, 张中礼等. 基于VOF法的平底结构自由落体入水砰击载荷模拟. 振动与冲击, 2017, 36(2): 185-189
    [33] (Wang Yijun, Li Minghai, Zhang Zhongli, et al.Numerical simulation on the slamming load in the water-entry process of flatted-bottom body based on the method VOF. Journal of Vibration and Shock, 2017, 36(2): 185-189 (in Chinese))
    [34] Menter FR.Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598-1605
    [35] Zwart PJ, Gerber AG, Belamri T.A two-phase flow model for predicting cavitation dynamics //Proceedings of International Conference on Multiphase Flow, Yokohama, Japan, 2004
    [36] Hunt JCR.Eddies stream and convergence zones in turbulent flows. Center for Turbulence Research, 1988: 193-208
  • 加载中
计量
  • 文章访问数:  1555
  • HTML全文浏览量:  280
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-01
  • 刊出日期:  2019-05-18

目录

    /

    返回文章
    返回