EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超疏水小球低速入水空泡研究

黄超 翁翕 刘谋斌

黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究[J]. 力学学报, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310
引用本文: 黄超, 翁翕, 刘谋斌. 超疏水小球低速入水空泡研究[J]. 力学学报, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310
Huang Chao, Wen Xi, Liu Moubin. STUDY ON LOW-SPEED WATER ENTRY OF SUPER-HYDROPHOBIC SMALL SPHERES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310
Citation: Huang Chao, Wen Xi, Liu Moubin. STUDY ON LOW-SPEED WATER ENTRY OF SUPER-HYDROPHOBIC SMALL SPHERES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 36-45. doi: 10.6052/0459-1879-18-310

超疏水小球低速入水空泡研究

doi: 10.6052/0459-1879-18-310
基金项目: 1)国家自然科学基金(51709004)和博士后基金(2017M610707)资助项目.
详细信息
    作者简介:

    作者简介: 2)刘谋斌,教授,主要研究方向:流固耦合力学、水动力学.E-mail: mbliu@pku.edu.cn

  • 中图分类号: TB126,U661.1;

STUDY ON LOW-SPEED WATER ENTRY OF SUPER-HYDROPHOBIC SMALL SPHERES

  • 摘要: 物体入水问题是一类复杂的流固耦合问题,具有广泛的工程应用背景.物体在跨越自由液面入水的过程中,在一定的条件下,会向水中卷入空气形成空泡,空泡的运动还可能形成指向物体的射流,从而对物体的受力及其运动过程产生影响.超疏水表面能够在物体入水过程中形成多尺度流固耦合作用,进而影响物体的运动和宏观流动现象.而对于小尺度的小球低速入水问题,表面和界面力往往起主导作用.为了在更广的参数空间获得超疏水小球入水空泡类型和小球的运动特性,采用高速摄影实验方法,研究了半径0.175$\sim$10mm的超疏水小球低速入水及空泡动力学行为,获得了小球漂浮振荡、准静态空泡、浅闭合空泡、深闭合空泡和表面闭合空泡5种类型的动力学行为,探讨了这些运动行为与韦伯数We}和邦德数Bo之间的关系,并推导了小球漂浮振荡与下沉现象的无量纲关系.研究结果表明:超疏水小球的入水及空泡动力学行为主要与韦伯数We和邦德数Bo有关.在邦德数Bo $<$ $O$ (10$^{-1})$范围内,表面张力对流动的影响显著,随着韦伯数We}的增大,小球入水及空泡动力学行为依次经历漂浮振荡、准静态闭合、浅闭合、深闭合和表面闭合;在邦德数$O$ (10$^{-1})$$<$ Bo} $<$$O(1)$范围内,漂浮振荡现象不再发生;当邦德数$Bo>O(1)$后,浅闭合现象也不再发生;小球漂浮振荡与下沉现象的临界关系可以用相似律关系描述.

     

  • [1] 潘光, 杨悝. 空投鱼雷入水载荷. 爆炸与冲击, 2014, 34(5): 521-526
    [1] (Pan Guang, Yang Kui.Impact force encountered by water-entry airborne torpedo. Explosion and Shock Waves, 2014, 34(5): 521-526 (in Chinese))
    [2] 施红辉, 周浩磊, 吴岩等. 伴随超空泡产生的高速细长体入水实验研究. 力学学报, 2012, 44(1): 49-55
    [2] (Shi Honghui, Zhou Haolei, Wu Yan, et, al. Experiments on water entry of high-speed slender body and the resulting supercavitation. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1): 49-55 (in Chinese))
    [3] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [3] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
    [4] 何肇雄, 郑震山, 马东立等. 国外跨介质飞行器发展历程及启示. 舰船科学技术, 2016, 38(9): 152-157
    [4] (He Zhaoxiong, Zheng Zhenshan, Ma Dongli, et, al. Development of foreign trans-media aircraft and its enlightenment to China. Ship Science and Technology, 2016, 38(9): 152-157 (in Chinese))
    [5] Koh JS, Yang E, Jung GP, et al.Jumping on water: Surface tension-dominated jumping of water striders and robotic insects. Science, 2015, 349(6247): 517
    [6] Floyd S, Keegan T, Palmisano J, et al.A Novel Water Running Robot Inspired by Basilisk Lizards International Conference on Intelligent Robots and Systems. IEEE, 2007: 5430-5436
    [7] Mckown JM.An experimental study of Worthington jet formation after impact of solid spheres. [PhD Thesis]. Massachusetts Institute of Technology, 2011
    [8] Mansoor MM, Marston JO, Vakarelski IU, et al.Water entry without surface seal: extended cavity formation. Journal of Fluid Mechanics, 2014, 743(3): 295-326
    [9] Truscott TT, Epps BP, Belden J.Water entry of projectiles. Annu Rev Fluid Mech, 2014, 46: 355-378
    [10] Castagna M, Mazellier N, Kourta A.Wake of super-hydrophobic falling spheres: Influence of the air layer deformation, Journal of Fluid Mechanics, 2018, 850(10): 646-673
    [11] Jetly A, Vakarelski IU, Thoroddsen ST.Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water. Soft Matter, 2018, 14(9): 1608
    [12] 路中磊, 孙铁志, 魏英杰等. 开放空腔壳体倾斜入水运动特性试验研究. 力学学报, 2018, 50(2): 263-273
    [12] (Lu Zhonglei, Sun Tiezhi, Wei Yingjie, et al.Experimental investigation on the motion feature of inclined water-entry of a semi-closed cylinder. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 263-273 (in Chinese))
    [13] Worthington AM, Cole RS. Impact with a liquid surface,studied by the aid of instantaneous photography. Philosophical Transactions of the Royal Society of London, 1897, 189: 137-148
    [14] Worthington AM, Cole RS.Impact with a liquid surface studied by the aid of instantaneous photography. Paper II. Philosophical Transactions of the Royal Society of London, 1900, 194: 175-199
    [15] Bell GE.On the impact of a solid sphere with a fluid surface and the influence of surface tension, surface layers, and viscosity on the phenomenon. Philosophical Magazine, 1924, 48(287): 753-764
    [16] May A.Effect of surface condition of a sphere on its water-entry cavity. Journal of Applied Physics, 1951, 22(10): 1219-1222
    [17] May A.Vertical entry of missiles into water. Journal of Applied Physics, 1952, 23(12): 1362-1372
    [18] Birkhoff G, Zarantonello EH.1957 Jets, wakes and cavities. Applied Mathematics and Mechanics, 1990(6): 353
    [19] Lee M, Longoria RG, Wilson DE.Cavity dynamics in high-speed water entry. Physics of Fluids, 1997, 9(3): 540-550
    [20] Yan H, Liu Y, Kominiarczuk J, et al.Cavity dynamics in water entry at low Froude numbers. Journal of Fluid Mechanics, 2009, 641(641): 441-461
    [21] Duez C, Ybert C, Clanet C, et al.Making a splash with water repellency. Nature Physics, 2007, 3(3): 180-183
    [22] Doquang M, Amberg G.The splash of a solid sphere impacting on a liquid surface: Numerical simulation of the influence of wetting. Physics of Fluids, 2009, 21(2): 180
    [23] 余彧, 陈效鹏. 亲/疏水性球体入水过程数值计算参数影响研究. 水动力学研究与进展, 2014, 29(4): 393-403
    [23] (Yu Yu, Chen Xiaopeng.The influences of numerical parameters on the water impact simulations of hydrophilic and hydrophobic spheres. Chinese Journal of Hydrodynamics, 2014, 29(4): 393-403 (in Chinese))
    [24] Truscott TT, Epps BP, Techet AH.Unsteady forces on spheres during free-surface water entry. Journal of Fluid Mechanics, 2012, 704(2): 173-210
    [25] Bodily K, Langley K, Huey J, et al.A new angle on water entry. Physics of Fluids, 2013, 25(9): 173
    [26] Ding H, Chen BQ, Liu HR, et al.On the contact-line pinning in cavity formation during solid-liquid impact. Journal of Fluid Mechanics, 2015, 783: 504-525
    [27] 董琪琪, 胡海豹, 陈立斌等. 矩形疏水沟槽表面水滴振荡特性. 力学学报, 2017, 49(6): 1252-1259
    [27] (Dong Qiqi, Hu Haibao, Chen Libin, et al.Characteristic of droplet oscillation on the surface of rectangular hydrophobic grooves. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1252-1259 (in Chinese))
    [28] Duclaux V, Caill F, Duez C, et al.Dynamics of transient cavities. Journal of Fluid Mechanics, 2007, 591(591): 1-19
    [29] Aristoff JM, Bush JWM.Water entry of small hydrophobic spheres. Journal of Fluid Mechanics, 2009, 619(619): 45-78
    [30] Aristoff JM.The influence of aerodynamic pressure on the water-entry cavities formed by high-speed projectiles//Proceedings of the 7th International Symposium on Cavitation, 2009: 1-5
    [31] Aristoff JM, Truscott TT, Techet AH, et al.The water-entry cavity formed by low Bond number impacts. Physics of Fluids, 2008, 20(9): 1362
    [32] 叶阳辉, 孙金绢, 史小兵等. 小韦伯数下小球入水的数值分析. 西安交通大学学报, 2012, 46(11): 40-43
    [32] (Ye Yanghui, Sun Jinjuan, Shi Xiaobing, et al.Numerical simulation of hydrophobic spheres entering water at low weber numbers. Journal of Xi'an Jiaotong University, 2012, 46(11): 40-43 (in Chinese))
    [33] 孙钊, 曹伟, 王聪等. 表面润湿性对球体入水空泡形态的影响研究. 兵工学报, 2016, 37(4): 670-676
    [33] (Sun Zhao, Cao Wei, Wang Cong, et al.Effect of surface wettability on cavitation of sphere during its water entry. Acta Armamentarii, 2016, 37(4): 670-676 (in Chinese))
    [34] Lee DG, Kim HY.Impact of a superhydrophobic sphere onto water. Langmuir the Acs Journal of Surfaces & Colloids, 2008, 24(1): 142
    [35] Gennes PGD, Brochard-Wyart F, Quéré D.Capillarity and Wetting Phenomena. Springer, 2004
    [36] 吕鹏宇, 薛亚辉, 段慧玲. 超疏水材料表面液-气界面的稳定性及演化规律. 力学进展, 2016, 46: 179-225
    [36] (Lü Pengyu, Xue Yahui, Duan Huiling.Stability and evolution of liquid-gas interfaces on superhydrophobic surfaces. Advances in Mechanics, 2016, 46: 179-225 (in Chinese))
    [37] Lee DG, Kim HY.Sinking of small sphere at low Reynolds number through interface. Physics of Fluids, 2011, 23(7): 3009
  • 加载中
计量
  • 文章访问数:  3104
  • HTML全文浏览量:  105
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回