EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型微通道反应器内气液两相流动机制及影响因素

韩宇 刘志军 王云峰 罗尧 刘凤霞 王晓娟 魏炜 许晓飞

韩宇, 刘志军, 王云峰, 罗尧, 刘凤霞, 王晓娟, 魏炜, 许晓飞. T型微通道反应器内气液两相流动机制及影响因素[J]. 力学学报, 2019, 51(2): 441-449. doi: 10.6052/0459-1879-18-269
引用本文: 韩宇, 刘志军, 王云峰, 罗尧, 刘凤霞, 王晓娟, 魏炜, 许晓飞. T型微通道反应器内气液两相流动机制及影响因素[J]. 力学学报, 2019, 51(2): 441-449. doi: 10.6052/0459-1879-18-269
Yu Han, Zhijun Liu, Yunfeng Wang, Yao Luo, Fengxia Liu, Xiaojuan Wang, Wei Wei, Xiaofei Xu. GAS-LIQUID TWO-PHASE FLOW REGIMES AND IMPACT FACTORS IN T-JUNCTION MICROREACTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 441-449. doi: 10.6052/0459-1879-18-269
Citation: Yu Han, Zhijun Liu, Yunfeng Wang, Yao Luo, Fengxia Liu, Xiaojuan Wang, Wei Wei, Xiaofei Xu. GAS-LIQUID TWO-PHASE FLOW REGIMES AND IMPACT FACTORS IN T-JUNCTION MICROREACTOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 441-449. doi: 10.6052/0459-1879-18-269

T型微通道反应器内气液两相流动机制及影响因素

doi: 10.6052/0459-1879-18-269
基金项目: 国家自然科学基金(51876030);中央高校基本科研业务费专项资金(DUT16QY39);辽宁省博士科研启动基金(201501179);大学生创新创业训练计划(2016101410553)
详细信息
    作者简介:

    2) 许晓飞,副教授,主要研究方向:复杂流体中的多相流动和传递理论.E-mail: xiaofei. xu@dlut.edu.cn

  • 中图分类号: O359.1

GAS-LIQUID TWO-PHASE FLOW REGIMES AND IMPACT FACTORS IN T-JUNCTION MICROREACTOR

  • 摘要: 基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.

     

  • [1] Shoji S, Kawai K . Flow control methods and devices in micrometer scale channels. Topics in Current Chemistry, 2011,304:1-25
    [2] Rong N, Zhou H, Liu R , et al. Ultrasound and microbubble mediated plasmid DNA uptake: A fast, global and multi-mechanisms involved process. Journal of Controlled Release, 2018,273:40-50
    [3] 王兆伟, 武晓刚, 陈魁俊 等. 一种力-电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137
    [3] ( Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):124-137 (in Chinese))
    [4] J?hnisch K, Hessel V, L?we H , et al. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004,43:406-446
    [5] Goran TV, Ekanem EE, Zilin Z , et al. Long-term stability of droplet production by microchannel (step) emulsification in microfuidic silicon chips with large number of terraced microchannels. Chemical Engineering Journal, 2018,333:380-391
    [6] Evangelio A, Campo-Cortés F, Gordillo JM . Pressure gradient induced generation of microbubbles. Fluid Mechanics, 2015,778(1):653-668
    [7] 刘赵淼, 杨洋 . 几何构型对流动聚焦生成微液滴的影响. 力学学报, 2016,48(4):867-876
    [7] ( Liu Zhaomiao, Yang Yang . Influence of geometric configuration on the formation of microdroplets by flow-focusing device. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):867-876 (in Chinese))
    [8] Dhanaliwala AH, Chen JL, Wang S , et al. Liquid flooded flow-focusing microfluidic device for in situ generation of monodisperse microbubbles. Microfluidics and Nanofluidics, 2013,14(3-4):457-467
    [9] Li YK, Wang K, Xu JH , et al. A capillary-assembled micro-device for monodispersed small bubble and droplet generation. Chemical Engineering Journal, 2016,293:182-188
    [10] Parhizkar M, Strideab E, Edirisinghe M . The effect of surfactant type and concentration on the size and stability of microbubbles produced in a capillary embedded T-junction device. Lab Chip, 2014,14(14):2437-2446
    [11] Wang K, Xie L, Lu Y , et al. Generating microbubbles in a co-flowing microfluidic device. Chemical Engineering Science, 2013,100:486-495
    [12] Parhizkar M, Edirisinghe M, Stride E . Effect of operating conditions and liquid physical properties on the size of monodisperse microbubbles produced in a capillary embedded T-junction device. Microfluidics and Nanofluidics, 2013,14(5):797-808
    [13] Yue J, Luo L, Gonthier Y , et al. An experimental investigation of gas-liquid two-phase flow in single microchannel contactors. Chemical Engineering Science, 2008,63(16):4189-4202
    [14] Gupta R, Fletcher D, Haynes BS , et al. Taylor flow in microchannels: A review of experimental and computational work. Journal of Computational Multiphase Flows, 2010,2(1):1-31
    [15] Waelchli S, Rudolf Von Rohr P . Two-phase flow characteristics in gas-liquid microreactors. International Journal of Multiphase Flow, 2006,32(7):791-806
    [16] 刘赵淼, 刘丽昆, 申峰 . Y 型微通道两相流内部流动特性. 力学学报, 2014,46(2):209-216
    [16] ( Liu Zhaomiao, Liu Likun, Shen Feng . Two-phase flow characteristics in Y-junction microchannel. Chinese Journal of Theoretical and Applied Mechanics, 2014,46(2):209-216 (in Chinese))
    [17] Fu T, Ma Y, Funfschilling D , et al. Bubble formation in non-Newtonian fluids in a microfluidic T-junction. Chemical Engineering and Processing: Process Intensification, 2011,50(4):438-442
    [18] 陈晓东, 胡国庆 . 微流控器件中的多相流动. 力学进展, 2015,45(1):55-110
    [18] ( Chen Xiaodong, Hu Guoqing . Multiphase flow in microfluidic devices. Advances in Mechanics, 2015,45(1):55-110 (in Chinese))
    [19] Damianides CA, Westwater JW . Two-phase flow patterns in a compact heat exchanger and in small tubes. Proceedings of the Second UK National Conference on Heat Transfer, 1988,11:1257-1268
    [20] Galbiati L, Andreini P . Flow pattern transition for horizontal air-water flow in capillary tubes. A microgravity "equivalent system" simulation. Heat Mass Transfer, 1994,21(4):461-468
    [21] Fourar M, Bories S . Experimental study of air-water two-phase flow through a fracture (narrow channel). International Journal of Multiphase Flow, 1995,21(4):621-637
    [22] Mandhane JM, Gregory GA, Aziz K . A flow pattern map for gas-liquid flow in horizontal pipes. International Journal of Multiphase Flow, 1974,1(4):537-553
    [23] Ahmed B, Barrow D, Wirth T . Enhancement of reaction rates by segmented fluid flow in capillary scale reactors. Advanced Synthesis and Catalysis, 2006,348:1043-1048
    [24] Burns JR, Ramshaw C . Development of a microreactor for chemical production. Transactions of the Institution of Chemical Engineers, 1999,77:206-211
    [25] Burns JR, Ramshaw C . The intensification of rapid reactions in multiphase systems using slug flow in capillaries. Lab Chip, 2001,1:10-15
    [26] Zhao Y, Chen G, Yuan Q . Liquid-liquid two-phase flow patterns in a rectangular microchannel. A.I.Ch.E. Journal, 2006,52:4052-4060
    [27] De Menech M, Garstecki P, Jousse F , et al. Transition from squeezing to dripping in a microfluidic T-shaped junction. Journal of Fluid Mechanics, 2008,595:141-161
    [28] Xu JH, Li SW, Tan J , et al. Correlation of droplet formation in T-junction microfluidic devices: From squeezing to dripping. Microfluidics and Nanofluidics, 2008,5:711-717
    [29] Fu T, Ma YG, Funfschilling D , et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction. Chemical Engineering Science, 2010,65:3739-3748
    [30] Fu T, Ma YG . Bubble formation and breakup dynamics in a microfluidic device: A review. Chemical Engineering Science, 2015,135:343-372
    [31] Rodriguez-Rodriguez J, Sevilla A, Martínez-Bazán C , et al. Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 2015,47(1):405-429
  • 加载中
计量
  • 文章访问数:  1294
  • HTML全文浏览量:  159
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-11
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回