EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速边界层中模态转化的数值研究

高军 李佳

高军, 李佳. 高超声速边界层中模态转化的数值研究[J]. 力学学报, 2018, 50(6): 1368-1378. doi: 10.6052/0459-1879-18-260
引用本文: 高军, 李佳. 高超声速边界层中模态转化的数值研究[J]. 力学学报, 2018, 50(6): 1368-1378. doi: 10.6052/0459-1879-18-260
Gao Jun, Li Jia. NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1368-1378. doi: 10.6052/0459-1879-18-260
Citation: Gao Jun, Li Jia. NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1368-1378. doi: 10.6052/0459-1879-18-260

高超声速边界层中模态转化的数值研究

doi: 10.6052/0459-1879-18-260
详细信息
    作者简介:

    null

    1) 高军,工程师,转捩及流动稳定性. E-mail:gaojun856@163.com

    通讯作者:

    高军

  • 中图分类号: O357.4;

NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS

  • 摘要: 在高超声速边界层中,第一模态和第二模态是与转捩有关的两个主要不稳定模态.除了不稳定模态,还存在一类稳定模态,其相速度在前缘接近快声波的相速度称为快模态.在感受性过程中,这类模态对激发边界层中不稳定模态起着很重要的作用.前缘感受性理论解释了边界层外扰动激发边界层中第一模态波的机理.针对高超声速平板边界层,利用相似性解剖面作为基本流,采用线性稳定性理论和直接数值模拟的方法研究了快模态和慢模态的稳定性行为.研究发现模态转化的位置与马赫数有关.根据线性稳定性理论的结果定义了临界频率.当扰动频率高于临界频率,第一模态与第二模态同支;而当扰动频率低于临界频率,第一模态与第二模态的共轭模态同支.借助稳定性方程的伴随方程分析了直接数值模拟的结果.直接数值模拟结果表明不论上游是快模态还是慢模态,当它们经过第二模态的不稳定区,它们都会演化成第二模态. 这可用模态在非平行流中传播的特征来解释.

     

  • [1] 邓维鑫,杨顺华,张弯洲等,高超声速流动的气体吹除控制方法研究. 推进技术,2017,38(4): 759-763
    [1] (Deng Weixin, Yang Shunhua, Zhang Wanzhou et al. Study on air blowing control method for hypersonic flow, Journal of Propulsion Technology, 2017, 38(4): 759-763(in Chinese))
    [2] 战培国,程娅红,赵昕. 主动流动控制技术研究. 航空科学技术,2010, 5: 2-6
    [2] (Zhan Peiguo, Cheng Yahong, Zhao Xin.A review of active flow control technology. Aeronautical Science&Technology, 2010, 5: 2-6 (in Chinese))
    [3] 段志伟,肖志祥. 粗糙元诱导的高超声速边界层转捩. 航空学报,2016, 37(8): 2454-2463
    [3] (Duan Zhiwei, Xiao Zhixiang.Roughness element induced hypersonic boundary layer transition. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2454-2463 (in Chinese))
    [4] Kachanov YS.Physical mechanisms of laminar boundary layer transition. Annual Review of Fluid Mechanics, 1994, 26(1): 411-482
    [5] Saric WS, Reed HL, Kerschen EJ.Boundary layer receptivity of freestream disturbances. Annual Review of Fluid Mechanics, 2002, 34(34): 291-319
    [6] Fedorov AV.Transition and stability of high speed boundary layers. Annual Review of Fluid Mechanics, 2011, 43(1): 79-95
    [7] Zhong XL, Wang XW.Direct numerical simulation on the receptivity,instability,and transition of hypersonic boundary layers. Annual Review of Fluid Mechanics, 2012, 44(1): 527-561
    [8] 周恒, 张涵信.有关近空间高超声速飞行器边界层转捩和湍流的两个问题.空气动力学学报, 2017, 35(2): 151-155
    [8] (Zhou Heng, Zhang Hanxin.Two problems in the transition and turbulence for near space hypersonic flying vehicles, Acta Aerodynamica Sinica, 2017, 35(2): 151-155 (in Chinese))
    [9] 江贤洋, 李存标.高超声速边界层感受性研究综述. 实验流体力学, 2017, 31(2): 1-11
    [9] (Jiang Xianyang, Li Cunbiao.Review of research on the receptivity of hypersonic boundary layer. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 1-11 (in Chinese))
    [10] 童福林,李新亮,唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104
    [10] (Tong Fulin, Li Xinliang, Tang Zhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese))
    [11] 王艳平,郭昊,刘沛清等. 高频吹气扰动影响近壁区拟序结构统计特性的实验研究. 力学学报, 2015, 47(4): 571-579
    [11] (Wang Yanpin, Guo Hao, Liu Peiqing, et al.Effects of high frequency blowing perturbation on a turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4): 571-579(in Chinese))
    [12] 崔光耀, 潘翀, 高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017, 49(6): 1201-1212
    [12] (Cui Guangyao, Pan Chong, Gao Qi, et al.Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212 (in Chinese))
    [13] 周恒, 苏彩虹, 张永明.超声速/高超声速边界层的转捩机理及预测. 北京: 科学出版社, 2015
    [13] (Zhou Heng, Su Caihong, Zhang Yongming.Transition Mechanism and Prediction of Supersonic/Hypersonic Boundary layer. Beijing: Science Pressi, 2015 (in Chinese))
    [14] 周恒, 赵耕夫. 流动稳定性. 北京: 国防工业出版社, 2004
    [14] (Zhou Heng, Zhao Gengfu. Hydrodynamic Stability.Beijing: National Defence Industry Press, 2004 (in Chinese))
    [15] Lees L, Lin CC.Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA TN-1115, 1964
    [16] Mack LM.Boundary layer linear stability theory. AGARD Report, 1984
    [17] Goldstein ME, Hultgren LS.Boundary layer receptivity to long wave free-stream disturbances. Annual Review of Fluid Mechanics, 1989, 21: 137-166
    [18] Goldstein ME.The evolution of Tollmien-Schlichting waves near a leading edge. Journal of Fluid Mechanics, 1983, 127: 59-81
    [19] Goldstein ME.Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. Journal of Fluid Mechanics, 1985, 154: 509-529
    [20] Ruban AI.On Tollmien-Schlichting Wave generation by Sound. Laminar-Turbulent Transition. Berlin, Heidelberg: Springer, 1985: 313-320.
    [21] Balakumar P, Malik, MR.Discrete modes and continuous spectra in hypersonic boundary layers. Journal of Fluid Mechanics, 2006, 239: 631-656
    [22] Joo J, Durbin PA.Continuous mode transition in high-speed boundary layers. Flow Turbulence&Combustion, 2012, 88(3): 407-430
    [23] Grosch CE, Salwen H.The continuous spectrum of the Orr-Sommerfeld equation I. The spectrum and the eigenfunctions. Journal of Fluid Mechanics, 1978, 87(6): 579-583
    [24] Fedorov AV, Khokhlov AP.Excitation of unstable modes in a hypersonic boundary layer by acoustic waves. Fluid Dynamics, 1991, 26(4): 531-537
    [25] Fedorov AV, Khokhlov AP.Prehistory of instability in a hypersonic boundary layer. Theoretical&Computational Fluid Dynamics, 2001, 14(6): 359-375
    [26] Fedorov AV.Receptivity of high speed boundary layer to acoustic disturbances. Journal of Fluid Mechanics, 2003, 491: 101-129
    [27] Gushchin VR, Fedorov AV.Excitation and development of unstable disturbances in a hypersonic boundary layer. Fluid Dynamics, 1990, 25(3): 344-352
    [28] Ma YH, Zhong XL.Receptivity of a hypersonic boundary layer over a flat plate Part 1. Wave structures and interactions. Journal of Fluid Mechanics, 2003, 488: 31-78
    [29] Ma YH, Zhong XL.Receptivity of a hypersonic boundary layer over a flat plate Part 2. Receptivity to free-stream sound. Journal of Fluid Mechanics, 2003, 488: 79-121
    [30] Ma YH, Zhong XL.Receptivity of a hypersonic boundary layer over a flat plate Part 3. Effects of different types of free-stream disturbances. Journal of Fluid Mechanics, 2005, 532: 63-109
    [31] Gao J, Luo JS.Mode decomposition of nonlinear eigenvalue problems and application in flow stability. Applied Mathematics and Mechanics, 2014, 35(6): 667-674
    [32] Tumin A.Multimode decomposition of spatially growing perturbations in a two-dimensional boundary layer. Physics of Fluids, 2003, 15(9): 2525-2540
    [33] Gaydos P, Tumin A.Multimode decomposition in compressible boundary layers. AIAA Journal, 2004, 42(6): 1115-1121
    [34] Tumin A.Three-dimensional spatial normal modes in compressible boundary layers. Journal of Fluid Mechanics, 2007, 586: 295-322
    [35] 张华, 罗纪生. 用扰动方程研究可压缩边界层中扰动的演化. 燕山大学学报, 2007, 31(3): 248-252
    [35] (Zhang Hua, Luo Jisheng.Computation of perturbation equations in compressible boundary flow. Journal of Yanshan University, 2007, 31(3): 248-252 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  174
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 刊出日期:  2018-11-18

目录

    /

    返回文章
    返回