EI、Scopus 收录
中文核心期刊
高军, 李佳. 高超声速边界层中模态转化的数值研究[J]. 力学学报, 2018, 50(6): 1368-1378. DOI: 10.6052/0459-1879-18-260
引用本文: 高军, 李佳. 高超声速边界层中模态转化的数值研究[J]. 力学学报, 2018, 50(6): 1368-1378. DOI: 10.6052/0459-1879-18-260
Gao Jun, Li Jia. NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1368-1378. DOI: 10.6052/0459-1879-18-260
Citation: Gao Jun, Li Jia. NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1368-1378. DOI: 10.6052/0459-1879-18-260

高超声速边界层中模态转化的数值研究

NUMERICAL INVERSITAGION OF MODE EXCHANGE IN HYPERSONIC BOUNDARY LAYERS

  • 摘要: 在高超声速边界层中,第一模态和第二模态是与转捩有关的两个主要不稳定模态.除了不稳定模态,还存在一类稳定模态,其相速度在前缘接近快声波的相速度称为快模态.在感受性过程中,这类模态对激发边界层中不稳定模态起着很重要的作用.前缘感受性理论解释了边界层外扰动激发边界层中第一模态波的机理.针对高超声速平板边界层,利用相似性解剖面作为基本流,采用线性稳定性理论和直接数值模拟的方法研究了快模态和慢模态的稳定性行为.研究发现模态转化的位置与马赫数有关.根据线性稳定性理论的结果定义了临界频率.当扰动频率高于临界频率,第一模态与第二模态同支;而当扰动频率低于临界频率,第一模态与第二模态的共轭模态同支.借助稳定性方程的伴随方程分析了直接数值模拟的结果.直接数值模拟结果表明不论上游是快模态还是慢模态,当它们经过第二模态的不稳定区,它们都会演化成第二模态. 这可用模态在非平行流中传播的特征来解释.

     

    Abstract: In hypersonic boundary layer, the first mode and the second mode are the main unstable modes which related to the boundary layer transition. In addition to these unstable modes, there is also a type of stable mode. At the leading edge, the phase speed of this stable mode is close to the phase speed of fast acoustic, so it is called fast mode. In the process of receptivity, it plays an important role of exciting unstable modes in boundary layer. Leading edge receptivity theory explains the mechanism of exciting the first mode. For hypersonic boundary layer, the similar solution is used as the basic flow, and the behavior of fast mode and slow mode are researched using linear stability theory and direct numerical simulation. The results indicate the location of the mode exchange is related to mach number. According to the results of linear stability theory, the critical frequency is defined. If the frequency of the disturbance is larger than the critical frequency, the first mode and the second mode are in the same branch; while the frequency of the disturbance is smaller than the critical frequency, the first mode and conjugate mode of the second mode are in the same branch. With the help of adjoint equations of linear stability equations, numerical results are analyzed. Numerical results indicate that when the fast and slow modes go though the region of second mode, they will evolve into the second mode. It can be explained by the propagation of the mode in the nonparallel flow.

     

/

返回文章
返回