EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共线式热电发电机在侧面散热情况下的性能

王雪强 剧成健 兑关锁

王雪强, 剧成健, 兑关锁. 共线式热电发电机在侧面散热情况下的性能[J]. 力学学报, 2019, 51(1): 192-197. doi: 10.6052/0459-1879-18-255
引用本文: 王雪强, 剧成健, 兑关锁. 共线式热电发电机在侧面散热情况下的性能[J]. 力学学报, 2019, 51(1): 192-197. doi: 10.6052/0459-1879-18-255
Wang Xueqiang, Ju Chengjian, Dui Guansuo. PERFORMANCE OF COLLINEAR THERMOELECTRIC GENERATOR CONSIDERING THE HEAT DISSIPATION IN THE SIDE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 192-197. doi: 10.6052/0459-1879-18-255
Citation: Wang Xueqiang, Ju Chengjian, Dui Guansuo. PERFORMANCE OF COLLINEAR THERMOELECTRIC GENERATOR CONSIDERING THE HEAT DISSIPATION IN THE SIDE SURFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 192-197. doi: 10.6052/0459-1879-18-255

共线式热电发电机在侧面散热情况下的性能

doi: 10.6052/0459-1879-18-255
基金项目: 1) 国家自然科学基金资助项目(11772041).
详细信息
    作者简介:

    作者简介: 2) 兑关锁,教授,主要研究方向:新型材料和结构的力学行为. E-mail:gsdui@bjtu.edu.cn

  • 中图分类号: TN377;

PERFORMANCE OF COLLINEAR THERMOELECTRIC GENERATOR CONSIDERING THE HEAT DISSIPATION IN THE SIDE SURFACE

  • 摘要: 热电材料是一种环境友好型功能材料,其可以实现热能与电能的相互转化,在热电发电、热电制冷中具有许多应用.传统的热电发电机为$\pi$型结构,要求热电腿的长度相等,在某些情况该结构不利于热电发电机的优化设计.热电发电机在高温工况下会引起强烈的热应力甚至应力集中,从而缩短了其工作寿命.另外,热电发电机的工作温度于环境温度,这样必然会有一部分热量散失到环境中,从而影响热电发电机的性能.针对该现象,本文建立了考虑散热的新型共线式热电发电机模型,该模型的热电腿可以独立进行优化,基于有限元方法,对考虑侧面散热的共线式热电发电机进行了仿真模拟,分析了其在狄利克雷边界条件下的热电性能和力学性能,得到了热电发电机的温度场、电势场、应力场,探究了不同强度的对流散热系数对热电发电机热电性能和力学性能的影响.结果表明,对流散热会降低热电发电机的能量转化效率,当对流换热系数达到~100W/(m$^{2}\cdot$\textcelsius) 时,效率为~0.0479,该值比绝热状态的转化效率0.066 7 低28%.对流散热使热电发电机侧面热损失增加,降低了热应力.在实际应用中,应合理优化设计隔热系统,提高能量的转化效率.

     

  • [1] Al-Nimr MA, Tashtoush BM, Khasawneh MA, et al.A hybrid concentrated solar thermal collector/thermo-electric generation system. Energy, 2017, 134: 1001-1012
    [2] Chen G.Theoretical efficiency of solar thermoelectric energy generators. Journal of Applied Physics, 2011, 109(10): 773-778
    [3] 贾磊, 陈则韶, 胡芃等. 导体温差发电器件的热力学分析. 中国科学技术大学学报, 2004, 34(6): 684-687
    [3] (Jia Lei, Chen Zeshao, Hu Peng, et al.Thermodynamic analysis of semiconductor thermoelectric generator. Journal of University of Science and Technology of China, 2004, 34(6): 684-687 (in Chinese))
    [4] Hadjistassou C, Kyriakides E, Georgiou J.Designing high efficiency segmented thermoelectric generators. Energy Conversion and Management, 2013, 66: 165-172
    [5] Kim S.Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators. Applied Energy, 2013, 102(2): 1458-1463
    [6] 贾阳, 任德鹏. 温差发电器中热电材料物性的影响分析. 电源技术, 2008, 32(4): 252-256
    [6] (Jia Yang, Ren Depeng.Effect analysis for physics characteristic of thermo-electric materials in thermo-electric generator. Journal of Power Sources, 2008, 32(4): 252-256 (in Chinese))
    [7] Ju CJ, Dui GS, Zheng H, et al.Revisiting the temperature dependence in material performance and performance of thermoelectric materials. Energy, 2017, 124: 249-257
    [8] Wang BL.A finite element computational scheme for transient and nonlinear coupling thermoelectric fields and the associated thermal stresses in thermoelectric materials. Applied Thermal Engineering, 2017, 110: 136-143
    [9] 杜群贵, 邹杰慧, 陈水金等. 半导体热电转换单元发电性能的变物性计算模型. 华南理工大学学报, 2013, 41(4): 47-53
    [9] (Du Qungui, Zou Jiehui, Chen Jinshui, et al.Calculation model of semiconductor thermoelectric generator unit based on variable material properties. Joumal of South China University of Technology, 2013, 41(4): 47-53 (in Chinese))
    [10] Liu ZC, Zhu SP, Ge Y, et al.Geometry optimization of two-stage thermoelectric generators using simplified conjugate-gradient method. Applied Energy, 2017, 190: 540-552
    [11] Ali H, Sahin AZ, Yilbas BS.Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins. Energy Conversion and Management, 2014, 78: 634-640
    [12] Al-Merbati AS, Yilbas BS, Sahin AZ.Thermodynamics and thermal stress analysis of thermoelectric power generator: Influence of pin geometry on device performance. Applied Thermal Engineering, 2013, 50: 683-692
    [13] Sahin AZ, Yilbas BS.The thermoelement as thermoelectric power generator: Effect of leg geometry on the efficiency and power generation. Energy Conversion Management, 2013, 65: 26-32
    [14] Kim H S, Itoh T, Iida T, et al.Design of linear shaped thermoelectric generator and self-integration using shape memory alloy. Materials Science and Engineering: B, 2014, 183(1): 61-68
    [15] Jia XD, Gao YW.Optimal design of a novel thermoelectric generator with linear-shaped structure under different operating temperature conditions. Applied Thermal Engineering, 2015, 78: 533-542
    [16] Jia XD, Wang YJ, Gao YW.Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply. Energy, 2017, 130: 276-285
    [17] Yilbas BS, Akhtar SS, Sahin AZ.Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations. Energy, 2016, 114: 52-63
    [18] 王长宏, 李娜, 林涛等. 半导体~P-N 型温差发电器件热电性能研究. 功能材料, 2016, 47(12): 12147-12151
    [18] (Wang Changhong, Li Na, Lin Tao, et al.Research on thermoelectric properties of semiconductor P-N type thermoelectric power generation device. Functional Materials, 2016, 47(12): 12147-12151 (in Chinese))
    [19] 张克实, 黄世鸿, 刘贵龙等. 纯铜后继屈服面的测试与晶体塑性模型模拟. 力学学报, 2017, 49(4): 870-879
    [19] (Zhang Keshi, Huang Shihong, Liu Guilong, et al.Measuring subsequent yield surface of pure copper by crystal plasticity simulation. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 870-879 (in Chinese))
    [20] Drink E, Martin J, Markus B, et al.Multiphysics simulation of thermoelectric systems for comparison with experimental device performance. Journal of Electronic Materials, 2009, 38(7): 1456-146
    [21] 龙凯, 王选, 韩丹. 基于多相材料的稳态热传导结构轻量化设计. 力学学报, 2017, 49(2): 359-366
    [21] (Long Kai, Wang Xuan, Han Dan.Structural light design for steady heat conduction using multi-material. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 359-366 (in Chinese))
    [22] 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347
    [22] (Zhang Peng, Du Chengbin, Jiang Shouyan.Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese)
  • 加载中
计量
  • 文章访问数:  868
  • HTML全文浏览量:  47
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回