EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁致伸缩主被动隔振装置中的磁机耦合效应研究

牛牧青 杨斌堂 杨诣坤 孟光 陈立群

牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. doi: 10.6052/0459-1879-18-254
引用本文: 牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2): 324-332. doi: 10.6052/0459-1879-18-254
Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. doi: 10.6052/0459-1879-18-254
Citation: Muqing Niu, Bintang Yang, Yikun Yang, Guang Meng, Liqun Chen. RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 324-332. doi: 10.6052/0459-1879-18-254

磁致伸缩主被动隔振装置中的磁机耦合效应研究

doi: 10.6052/0459-1879-18-254
基金项目: 国家自然科学基金资助项目(51775349)
详细信息
    作者简介:

    2) 陈立群,教授,主要研究方向:非线性动力学与振动控制.E-mail: chenliqun@hit.edu.cn

  • 中图分类号: O328

RESEARCH ON THE MAGNETO-MECHANICAL EFFECT IN ACTIVE AND PASSIVE MAGNETOSTRICTIVE VIBRATION ISOLATOR

  • 摘要: 磁致伸缩材料和柔顺位移放大机构组成的主动驱动装置具有精度高、驱动力大等特点.将其与被动隔振装置并联,形成主被动隔振装置,可以弥补纯被动隔振在低频和微幅扰动工况下的不足.本文针对这类磁致伸缩主被动隔振装置进行磁机耦合效应研究.基于Jiles-Atherton模型,分析了磁致伸缩材料所受应力对有效磁场、磁化强度、磁致伸缩系数和材料杨氏模量的影响,表征了材料磁机耦合效应.在此基础上,建立了主被动隔振装置的动力学模型,分析了主动驱动装置与被动隔振装置间的耦合作用.在耦合作用影响下,若被动隔振装置刚度不同,即使输入磁场相同,驱动器产生的驱动位移和驱动力也不相同.磁致伸缩材料的变刚度效应使隔振装置整体等效刚度不再为定值,从而影响被动隔振效果.本文提出了通过柔顺机构参数设计减小前述两种耦合影响的方法.数值仿真结果表明,磁致伸缩主被动隔振装置在低于、接近和高于谐振频率三类扰动下,都能达到比被动隔振更好的振动抑制效果.此外,仿真结果验证了考虑磁机耦合效应的数值模型具有更高精度.

     

  • [1] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [1] ( Cao Dengqing, Bai Kunchao, Ding Hu , et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [2] 董瑶海 . 航天器微振动-理论与实践. 北京: 中国宇航出版社, 2015
    [2] ( Dong Yaohai. Micro-Vibration of Spacecraft-Theory and Practice. Beijing: China Aerospace Press, 2015 (in Chinese))
    [3] 陆泽琦, 陈立群 . 非线性被动隔振的若干进展. 力学学报, 2017,49(3):550-564
    [3] ( Lu Zeqi, Chen Liqun . Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):550-564 (in Chinese))
    [4] 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108
    [4] ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time-varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108 (in Chinese))
    [5] Joule J . On a new class of magnetic forces. Ann Electr Magn Chem, 1842,8(1842):219-224
    [6] 毛剑琴 . 智能结构动力学与控制. 北京: 科学出版社, 2013
    [6] ( Mao Jianqin. Dynamics and Control of Smart Structure. Beijing: Science Press, 2013 (in Chinese))
    [7] Huber JE, Fleck NA, Ashby MF . The Selection of Mechanical Actuators Based on Performance Indices. Proceedings Mathematical Physical & Engineering Sciences, 1997,453(1965):2185-2205
    [8] Kim WJ, Sadighi A . A novel low-power linear magnetostrictive actuator with local three-phase excitation. IEEE/ASME Transactions on Mechatronics, 2010,15(2):299-307
    [9] Xue G, Zhang P, Li X , et al. A review of giant magnetostrictive injector (GMI). Sensors & Actuators A Physical, 2018,273:159-181
    [10] Zhu Y, Yang X, Fu T . Dynamic modeling and experimental investigations of a magnetostrictive nozzle-flapper servovalve pilot stage. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2016,230(3):197-207
    [11] Yoshioka H, Shinno H, Sawano H . A newly developed rotary-linear motion platform with a giant magnetostrictive actuator. CIRP Annals-Manufacturing Technology, 2013,62(1):371-374
    [12] Park G, Bement MT, Hartman DA , et al. The use of active materials for machining processes: A review. International Journal of Machine Tools & Manufacture, 2007,47(15):2189-2206
    [13] Sun X, Yang B, Zhao L , et al. Optimal design and experimental analyses of a new micro-vibration control payload-platform. Journal of Sound & Vibration, 2016,374:43-60
    [14] 段博文 . 应用超磁致伸缩材料的可控式液压悬置隔振特性研究.[硕士论文]. 南京:南京航空航天大学, 2016
    [14] ( Duan Bowen . Dynamic Analysis and Control of an Active Power-train Mount Based on Magnetostrictive Actuator. [Master Thesis]. Nanjing: Nanjing University of Aeronautics & Astronautics, 2016 (in Chinese))
    [15] Nakamura Y, Nakayama M, Masuda K , et al. Development of active six-degrees-of-freedom microvibration control system using giant magnetostrictive actuators. Smart Materials & Structures, 2000,9(2):175-185
    [16] Nakamura Y, Nakayama M, Yasuda M , et al. Development of active six-degrees-of-freedom micro-vibration control system using hybrid actuators comprising air actuators and giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(4):1133-1142.
    [17] Geng Z J, Haynes L S . Six degree-of-freedom active vibration control using the Stewart platforms. IEEE Transactions on Control Systems Technology, 2002,2(1):45-53
    [18] Braghin F, Cinquemani S, Resta F . A model of magnetostrictive actuators for active vibration control. Sensors & Actuators A Physical, 2011,165(2):342-350
    [19] Zhou HM, Zheng XJ, Zhou YH . Active vibration control of nonlinear giant magnetostrictive actuators. Smart Materials & Structures, 2006,15(3):792-798
    [20] Zhang T, Yang BT, Li HG , et al. Dynamic modeling and adaptive vibration control study for giant magnetostrictive actuators. Sensors and Actuators A: Physical, 2013,190:96-105
    [21] Kellogg RA, Flatau AB . Stress-strain relationship in Terfenol-D. Proceedings of SPIE-The International Society for Optical Engineering, 2001,4327:541-549
    [22] Datta S, Atulasimha J, Mudivarthi C , et al. Stress and magnetic field-dependent Young's modulus in single crystal iron-gallium alloys. Journal of Magnetism and Magnetic Materials, 2010,322(15):2135-2144
    [23] Sablik MJ, Jiles DC . Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Transactions on Magnetics, 1993,29(4):2113-2123
    [24] Jiles D . Theory of the magnetomechanical effect. Journal of Physics D: Applied Physics, 1995,28(8):1537-1546
    [25] Zheng XJ, Liu X . A nonlinear constitutive model for Terfenol-D rods. Journal of Applied Physics, 2005,97(5):61-68
    [26] Niu M, Yang B, Yang Y , et al. Two generalized models for planar compliant mechanisms based on tree structure method. Precision Engineering, 2017,51:137-144
    [27] Jiles D, Atherton D . Ferromagnetic hysteresis. IEEE Transactions on Magnetics, 1983,19(5):2183-2185
    [28] Sablik M, Jiles D . A model for hysteresis in magnetostriction. Journal of Applied Physics, 1988,64(10):5402-5404
    [29] Yang Y, Yang B, Niu M . Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller. Nonlinear Dynamics, 2018,92(9):1-10
    [30] Al Janaideh M, Aljanaideh O . Further results on open-loop compensation of rate-dependent hysteresis in a magnetostrictive actuator with the Prandtl-Ishlinskii model. Mechanical Systems & Signal Processing, 2018,104:835-850
  • 加载中
计量
  • 文章访问数:  1085
  • HTML全文浏览量:  57
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-02
  • 刊出日期:  2019-03-18

目录

    /

    返回文章
    返回