EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自主泳动弹性绳的轨迹模拟

王郡 朱永宁 徐鉴

王郡, 朱永宁, 徐鉴. 自主泳动弹性绳的轨迹模拟[J]. 力学学报, 2019, 51(1): 198-208. doi: 10.6052/0459-1879-18-230
引用本文: 王郡, 朱永宁, 徐鉴. 自主泳动弹性绳的轨迹模拟[J]. 力学学报, 2019, 51(1): 198-208. doi: 10.6052/0459-1879-18-230
Wang Jun, Zhu Yongning, Xu Jian. TRAJECTORY SIMULATION OF SELF-PROPELLED ELASTIC RODS IN FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 198-208. doi: 10.6052/0459-1879-18-230
Citation: Wang Jun, Zhu Yongning, Xu Jian. TRAJECTORY SIMULATION OF SELF-PROPELLED ELASTIC RODS IN FLUID[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 198-208. doi: 10.6052/0459-1879-18-230

自主泳动弹性绳的轨迹模拟

doi: 10.6052/0459-1879-18-230
基金项目: 1)国家自然科学基金(11772229),浦江人才计划(16PJ1409800)和中央高校基本科研业务费(221201800075)资助项目.
详细信息
    作者简介:

    作者简介: 2)徐鉴,教授,主要研究方向:非线性动力学,E-mail:xujian@tongji.edu.cn

    通讯作者:

    王郡,朱永宁,徐鉴

    朱永宁

    徐鉴

  • 中图分类号: O351.2;

TRAJECTORY SIMULATION OF SELF-PROPELLED ELASTIC RODS IN FLUID

  • 摘要: 研究柔性结构与流体间耦合作用,可以促进软体机器人的发展.通过速度快、精度高的数值模拟方法模拟水下机器人的实时运动轨迹,可以为真实实验提供测试方向与理论牵引,增大实验成功的可能性.本文研究有自主运动趋势的弹性绳在二维流场中的运动轨迹.首先,对弹性绳离散化建模并同时考虑拉压与扭转弹性力,从能量角度建立动力学方程,此模型可以较为真实地反映弹性绳内力对其运动产生的作用.然后基于半拉格朗日法建立流体求解器. 最后,提出简化的基于动量方程的浸入边界法作为耦合算法,通过直接修正网格速度代替浸入边界力法中力源项的作用.使用这种算法求解耦合作用兼具简便性与快速性.对弹性绳模型、流体模型与简化耦合模型依次解算,模拟了正弦形式波动弹性绳在水中的运动轨迹.结果显示,弹性绳在弹性内力与流固相互作用力共同影响下,该种新的浸入边界法可以实现对水下弹性绳运动轨迹的模拟.数值实验显示弹性绳的自主运动参考模型的初相位改变时,其前进方向会发生改变.该仿真模拟算法与平台可以为细长形软体水生机器人的研发提供参考.

     

  • [1] Lighthill MJ.Note on the swimming of slender fish. Journal of Fluid Mechanics, 2006, 9(2): 305-317
    [2] Lindsey CC.Form, function, and locomotory habits in fish. Fish Physiology, 1978, 7: 1-100
    [3] Lighthill MJ. large-amplitude elongated-body theory of fish locomotion. Proceedings of the Royal Society of London, 1971, 179(1055): 125-138
    [4] Weihs D, Katz J.Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. Journal of Fluid Mechanics, 1978, 88(3): 485-497
    [5] Wu TY.Hydromechanics of swimming propulsion. Part 2. Some optimum shape problems. Journal of Fluid Mechanics, 1971, 46(3): 521-544
    [6] 程健宇, 庄礼贤, 童秉纲. 鱼类鳗鲡模式推进的游动性能分析. 水动力学研究与进展, 1988(3): 91-101
    [6] (Cheng Jianyu, Zhuang Lixian, Tong Binggang.Analysis of swimming performance of fish eel model propulsion. Journal of Hydrodynamics, 1988(3): 91-101 (in Chinese))
    [7] Mittal R, Dong H, Bozkurttas M, et al.A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics, 2008, 227(10): 4825-4852
    [8] Yamada T.An arbitrary Lagarangian-Eulerian finite element method for geometric nonlinear problems for elastic bodies. Surikaisekikenkyüsho Kokyuroku, 2002(1288): 122-135
    [9] Videler JJ. Fish Swimming. Springer, 1993
    [10] Jones BA, Walker ID.Kinematics for multi-section continuum robots. IEEE Transactions on Robotics, 2006, 22(1): 43-55
    [11] Lighthill MJ.Note on the swimming of slender fish. Journal of Fluid Mechanics, }1960, 9(2): 305-317
    [12] Van WS, Strother JA, Flammang BE, et al.Extremely fast prey capture in pipefish is powered by elastic recoil. Journal of the Royal Society Interface, 2011, 5(20): 285
    [13] Bandringa H.Immersed boundary methods. Ann. Rev.Fluid Mech, 2010, 37(37): 239-261
    [14] Jia LB, Xiao Q, Wu HJ, et al.Response of a flexible filament in a flowing soap film subject to a forced vibration. Physics of Fluids, 2015, 27(1): 017101
    [15] Jia LB, Li F, Yin XZ, et al.Coupling modes between two flapping filaments. Journal of Fluid Mechanics, 2007, 581: 199-220
    [16] Jia LB, Yin XZ.Passive oscillations of two tandem flexible filaments in a flowing soap film. Physical Review Letters, 2008, 100: 228104
    [17] 卢振利, 李斌. 蛇形机器人蜿蜒游动性能动力学仿真分析. 机器人, 2015, 37(6): 748-753
    [17] (Lu Zhenli, Li Bin.Dynamics simulation analysis on serpentine swimming performance of a snake-like robot. Robot, 2015, 37(6): 748-753 (in Chinese))
    [18] Jian LI, Wang ZL, Guo YL, et al.Application of shape memory alloy used for bionic underwater swimming robot. Small & Special Electrical Machines, 2014, 42(12): 82-86
    [19] Yamakita M, Kamamichi N, Kozuki T, et al.A snake-like swimming robot using IPMC actuator and verification of doping effect. International Conference on Intelligent Robots and Systems,IEEE, 2005: 2035-2040
    [20] 尹婷婷, 邓子辰, 胡伟鹏等. 空间刚性杆--弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018, 50(1): 87-98
    [20] (Yin Ting- ting, Deng Zichen, Hu Weipeng. Dynamic modeling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 87-98 (in Chinese))
    [21] Bergou M, Wardetzky M, Robinson S, et al.Discrete elastic rods. Acm Transactions on Graphics, 2008, 27(3): 1-12
    [22] 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018, 39(2): 1549-1561
    [22] (He Tao.A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary Lagrangian-Eulerian finete element formulation. Chinese Journal of Theoretical and Applied Mechanics,2018, 39(2): 1549-1561 (in Chinese))
    [23] 段松长, 赵西增, 叶洲腾等. 错列角度对双圆柱涡激振动影响的数值模拟研究. 力学学报, 2018, 50(2): 244-253
    [23] (Duan Songchang, Zhao Xizeng, Ye Zhouteng, et al.Numerical study of staggered angle of the vortex-induced vibration of two cylinders. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 244-253 (in Chinese))
    [24] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [24] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater lauched vehicle. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
    [25] Wang J, Xu JZ, Xu Lei.Discussion mechanism based shuffled frog leaping algorithm. Computer & Digital Engineering, 2017, 45(8): 1465-1468
    [26] Antoci C, Gallati M, Sibilla S.Numerical simulation of fluid--structure interaction by SPH. Computers & Structures, 2007, 85(11--14): 879-890
    [27] Sarrate J, Huerta A, Donea J.Arbitrary Lagrangian--Eulerian formulation for fluid--rigid body interaction. Computer Methods in Applied Mechanics & Engineering, 2001, 190(24): 3171-3188
    [28] Stam J.Stable fluids//Proc. ACM SIGGRAPH 1999 Conference Series, 1999: 121-128
    [29] 胡文蓉, 童秉纲, 马晖扬.鱼类机动运动机理初探//2003空气动力学前沿研究学术研讨会, 2013
    [29] (Hu Wenrong, Tong Bingang, Ma Huiyang.A preliminary study on the mechanism of fish 2013 Symposium on Aerodynamics Frontier Research, 2013 (in Chinese))
    [30] Stam J, Jensen HW.Visual simulation of smoke Conference on Computer Graphics and Interactive Techniques, ACM, 2001: 15-22
    [31] 郝栋伟. 基于浸入边界法的"C"型鱼自主游动的数值模拟. [硕士论文]. 昆明: 昆明理工大学, 2013
    [31] (Hao Dongwei.Numerical simulation of self-propelled of "C" type swimming fish using the immersed boundary method. [Master Thesis]. Kunming: Kunming University of Science and Technology, 2013 (in Chinese))
    [32] 胡潇毅. 一类流固耦合问题的数值算法及风场中摇曳树木的物理仿真. [博士论文]. 杭州: 浙江大学, 2008
    [32] (Hu Xiaoyi.Numerical methods for a class of fluid.structure interaction problems and simulation of swaying tree in wind field. [PhD Thesis]. Hangzhou: Zhejiang University,2008 (in Chinese))
    [33] 王文全, 郝栋伟, 闫妍等. 基于浸入边界法的鱼体自主游动的数值模拟. 计算力学学报, 2014(5): 646-651
    [33] (Wang Wenquan, Hao Dongwei, Yan Yan, et al.Numerical simulation of self-propelled swimming fish using the immersed boundary method. Chinese Journal of Computational Mechanics, 2014(5): 646-65 (in Chinese))
    [34] 郁树梅, 王明辉, 马书根等. 水陆两栖蛇形机器人的研制及其陆地和水下步态. 机械工程学报, 2012, 48(9): 18-25
    [34] (Yu Shumei, Wang Minghui, Ma Shugen, et al.Development of an amphibious snake-like robot and its gaits on ground and in water. Journal of Mechanical Engineering, 2012, 48(9): 18-25 (in Chinese))
  • 加载中
计量
  • 文章访问数:  2046
  • HTML全文浏览量:  92
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回