EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型扩展比例边界有限元法

江守燕 李云 杜成斌

江守燕, 李云, 杜成斌. 改进型扩展比例边界有限元法[J]. 力学学报, 2019, 51(1): 278-288. doi: 10.6052/0459-1879-18-218
引用本文: 江守燕, 李云, 杜成斌. 改进型扩展比例边界有限元法[J]. 力学学报, 2019, 51(1): 278-288. doi: 10.6052/0459-1879-18-218
Jiang Shouyan, Li Yun, Du Chengbin. IMPROVED EXTENDED SCALED BOUNDARY FINITE ELEMENT METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 278-288. doi: 10.6052/0459-1879-18-218
Citation: Jiang Shouyan, Li Yun, Du Chengbin. IMPROVED EXTENDED SCALED BOUNDARY FINITE ELEMENT METHODS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 278-288. doi: 10.6052/0459-1879-18-218

改进型扩展比例边界有限元法

doi: 10.6052/0459-1879-18-218
基金项目: 1)国家自然科学基金(51579084)和中央高校基本科研业务费专项资金(2015B01714, 2018B48514)资助项目.
详细信息
    作者简介:

    作者简介: 2) 江守燕,副教授,主要研究方向:计算力学与虚拟仿真.E-mail: syjiang@hhu.edu.cn

  • 中图分类号: TB115;

IMPROVED EXTENDED SCALED BOUNDARY FINITE ELEMENT METHODS

  • 摘要: 结合了扩展有限元法(extended finite elementmethods,XFEM)和比例边界有限元法(scaled boundary finite elementmethods,SBFEM)的主要优点,提出了一种改进型扩展比例边界有限元法(improvedextended scaled boundary finite elementmethods,$i$XSBFEM),为断裂问题模拟提供了一条新的途径.类似XFEM,采用两个正交的水平集函数表征材料内部裂纹面,并基于水平集函数判断单元切割类型;将被裂纹切割的单元作为SBFE的子域处理,采用SBFEM求解单元刚度矩阵,从而避免了XFEM中求解不连续单元刚度矩阵需要进一步进行单元子划分的缺陷;同时,借助XFEM的主要思想,将裂纹与单元边界交点的真实位移作为单元结点的附加自由度考虑,赋予了单元结点附加自由度明确的物理意义,可以直接根据位移求解结果得出裂纹与单元边界交点的位移;对于含有裂尖的单元,选取围绕裂尖单元一圈的若干层单元作为超级单元,并将此超级单元作为SBFE的一个子域求解刚度矩阵,超级单元内部的结点位移可通过SBFE的位移模式求解得到,应力强度因子可基于裂尖处的奇异位移(应力)直接获得,无需借助其他的数值方法.最后,通过若干数值算例验证了建议的$i$XSBFEM的有效性,相比于常规XFEM,$i$XSBFEM的基于位移范数的相对误差收敛性较好;采用$i$XSBFEM通过应力法和位移法直接计算得到的裂尖应力强度因子均与解析解吻合\较好.

     

  • [1] Belytschko T, Black T.Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620
    [2] Xu DD, Liu ZL, Zhuang Z.Recent advances in the extended finite element method (XFEM) and isogeometric analysis (IGA)[N]. 2016, 59(12): 124631
    [3] Wang T, Liu ZL, Zeng QL, et al.XFEM modeling of hydraulic fracture in porous rocks with natural fractures. Science China Physics Mechanics & Astronomy, 2017, 60(8): 084612
    [4] 石杰, 李庆斌. 基于扩展有限元的重力坝尺寸效应. 清华大学学报(自然科学版), 2017, 57(4): 345-350
    [4] (Shi Jie, Li Qingbin.Size effects of concrete gravity dams based on XFEM analysis. Journal of Tsinghua University (Science & Technology), 2017, 57(4): 345-350 (in Chinese))
    [5] Moës N, Dolbow J, Belytschko T.A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150
    [6] 江守燕, 杜成斌. 弱不连续问题扩展有限元法的数值精度研究. 力学学报, 2012, 44(6): 1005-1015
    [6] (Jiang Shouyan, Du Chengbin.Study on numerical precision of extended finite element methods for modeling weak discontinuties. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1005-1015 (in Chinese))
    [7] Bordas SP, Rabczuk T, Hung NX et al. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23-24): 1419-1443
    [8] Ventura G.On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761-779
    [9] Natarajan S, Mahapatra DR, Bordas SP.Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/GFEM framework. International Journal for Numerical Methods in Engineering, 2010, 83(3): 269-294
    [10] Natarajan S, Bordas SP, Mahapatra D.Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping. International Journal for Numerical Methods in Engineering, 2009, 80(1): 103-134
    [11] 田荣, 文龙飞. 改进型XFEM进展. 计算力学学报, 2016, 33(4): 469-477
    [11] (Tian Rong, Wen Longfei.Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016, 33(4): 469-477 (in Chinese))
    [12] 文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018, 50(3): 599-610
    [12] (Wen Longfei, Wang Lixiang, Tian Rong.Accrate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 599-610 (in Chinese))
    [13] 江守燕, 杜成斌, 顾冲时等. 求解双材料界面裂纹应力强度因子的扩展有限元法. 工程力学, 2015, 32(3): 22-27
    [13] (Jiang Shouyan, Du Chengbin, Gu Chongshi, et al.Computation of stress intensity factors for interface cracks between two dissimilar materials using extended finite element methods. Engineering Mechanics, 2015, 32(3): 22-27(in Chinese))
    [14] 江守燕, 杜成斌. 动载下缝端应力强度因子计算的扩展有限元法. 应用数学和力学, 2013, 34(6): 586-597
    [14] (Jiang Shouyan, Du Chengbin.Evaluation on stress intensity factors at the crack tip under dynamic loads using extended finite element methods. Applied Mathematics and Mechanics, 2013, 34(6): 586-597 (in Chinese))
    [15] 刘学聪, 章青, 夏晓舟. 一种新型裂尖加强函数的显式动态扩展有限元法. 工程力学, 2017, 34(10): 10-18
    [15] (Liu Xuecong, Zhang Qing, Xia Xiaozhou.A new enrichment function of crack tip in XFEM dynamics by explicit time algorithm. Engineering Mechanics, 2017, 34(10): 10-18 (in Chinese))
    [16] Song C, Wolf JP.The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics. Computer Methods in Applied Mechanics and Engineering, 1997, 147(3): 329-355
    [17] Deeks AJ, Wolf JP.A virtual work derivation of the scaled boundary finite-element method for elastostatics. Computational Mechanics, 2002, 28(6): 489-504
    [18] Song C, Wolf JP.Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Computers and Structures, 2002, 80(2): 183-197
    [19] Huang YJ, Yang ZJ, Liu GH, et al.An efficient FE--SBFE coupled method for mesoscale cohesive fracture modelling of concrete. Computational Mechanics, 2016, 58(4): 635-655
    [20] 钟红, 暴艳利, 林皋. 基于多边形比例边界有限元的重力坝裂缝扩展过程模拟.水利学报, 2014, 45(S1): 30-37
    [20] (Zhong Hong, Bao Yanli, Lin Gao.Modelling of crack propagation of gravity dams based on scaled boundary polygons. Journal of Hydraulic Engineering, 2014, 45(S1): 30-37 (in Chinese))
    [21] 陈楷, 邹德高, 孔宪京等. 多边形比例边界有限单元非线性化方法及应用. 浙江大学学报(工学版), 2017, 51(10): 1996-2004
    [21] (Chen Kai, Zou Degao, Kong Xianjing, et al.Novel nonlinear polygon scaled boundary finite element method and its application. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 1996-2004 (in Chinese))
    [22] 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347
    [22] (Zhang Peng, Du Chengbin, Jiang Shouyan.Crack face contact problem analysis using the scaled boundary finite element method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese))
    [23] Natarajan S, Song C.Representation of singular fields without asymptotic enrichment in the extended finite element method. International Journal for Numerical Methods in Engineering, 2013, 96(13): 813-841
    [24] 陈白斌, 李建波, 林皋. 基于X-SBFEM的裂纹体非网格重剖分耦合模型研究. 工程力学, 2015, 32(3): 15-21
    [24] (Chen Baibin, Li Jianbo, Lin Gao.Study on the coupling model of crack without remeshing based on X-SBFEM. Engineering Mechanics, 2015, 32(3): 15-21 (in Chinese))
    [25] 陈白斌, 李建波, 林皋. 无需裂尖增强函数的扩展比例边界有限元法. 水利学报, 2015, 46(4): 489-496
    [25] (Chen Baibin, Li Jianbo, Lin Gao.An extended scaled boundary finite element method without asymptotic enrichment of the crack tip. Journal of Hydraulic Engineering, 2015, 46(4): 489-496, 504 (in Chinese))
    [26] 李建波, 陈白斌, 林皋. 基于水平集算法的扩展比例边界有限元法研究. 工程力学, 2016, 33(8): 8-14
    [26] (Li Jianbo, Chen Baibin, Lin Gao.Study on the extended scaled boundary finite element method based on level set algorithm. Engineering Mechanics, 2016, 33(8): 8-14 (in Chinese))
    [27] 傅兴安, 李建波, 林皋. 基于X-SBFEM的非线性断裂数值模型研究. 大连理工大学学报, 2017, 57(5): 494-500
    [27] (Fu Xing'an, Li Jianbo, Lin Gao. Study of numerical model of nonlinear fracture based on X-SBFEM. Journal of Dalian University of Technology, 2017, 57(5): 494-500 (in Chinese))
    [28] Jiang S, Du C.Coupled finite volume methods and extended finite element methods for the dynamic crack propagation modelling with the pressurized crack surfaces. Shock and Vibration, 2017, 2017: 3751340
    [29] Jiang S, Du C.Study on dynamic interaction between crack and inclusion or void by using XFEM. Structural Engineering & Mechanics, 2017, 63(3): 329-345
    [30] Fries TP.A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75: 503-532
    [31] 江守燕, 杜成斌. 一种XFEM断裂分析的裂尖单元新型改进函数. 力学学报, 2013, 45(1): 134-138
    [31] (Jiang Shouyan, Du Chengbin.A novel enriched function of elements containing crack tip for fracture analysis in XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 134-138 (in Chinese))
    [32] Pommier S, Gravouil A, Combescure A, et al.Extended Finite Element Method for Crack Propagation. ISTE Ltd and John Wiley & Sons, Inc., 2011: 8-9
    [33] Mohammadi S.Extended Finite Element Method. Blackwell Publishing Ltd, 2008: 28-29
    [34] Sih GC, Paris PC, Erdogan F.Crack-tip stress intensity factors for plane extension and plane bending problems. Journal of Applied Mechanics, 1962, 29: 306-312
    [35] Zamani A, Gracie R, Eslami MR.Cohesive and non-cohesive fracture by higher-order enrichment of XFEM. International Journal for Numerical Methods in Engineering, 2012, 90: 452-483
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  93
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回