EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非结构/混合网格模拟黏性流的高阶精度DDG/FV混合方法

邵帅 李明 王年华 张来平

邵帅, 李明, 王年华, 张来平. 基于非结构/混合网格模拟黏性流的高阶精度DDG/FV混合方法[J]. 力学学报, 2018, 50(6): 1470-1482. doi: 10.6052/0459-1879-18-199
引用本文: 邵帅, 李明, 王年华, 张来平. 基于非结构/混合网格模拟黏性流的高阶精度DDG/FV混合方法[J]. 力学学报, 2018, 50(6): 1470-1482. doi: 10.6052/0459-1879-18-199
Shao Shuai, Li Ming, Wang Nianhua, Zhang Laiping. HIGH-ORDER DDG/FV HYBRID METHOD FOR VISCOUS FLOW SIMULATION ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1470-1482. doi: 10.6052/0459-1879-18-199
Citation: Shao Shuai, Li Ming, Wang Nianhua, Zhang Laiping. HIGH-ORDER DDG/FV HYBRID METHOD FOR VISCOUS FLOW SIMULATION ON UNSTRUCTURED/HYBRID GRIDS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1470-1482. doi: 10.6052/0459-1879-18-199

基于非结构/混合网格模拟黏性流的高阶精度DDG/FV混合方法

doi: 10.6052/0459-1879-18-199
基金项目: 1) 国家重点研发计划(2016YFB0200700) 和自然科学基金重大研究计划集成项目(91530325) 资助.
详细信息
    作者简介:

    null

    2) 邵帅, 硕士, 主要研究方向: 非结构网格高精度数值算法. E-mail: shaoshuai951413@gmail.com

    通讯作者:

    张来平

  • 中图分类号: V211.3;

HIGH-ORDER DDG/FV HYBRID METHOD FOR VISCOUS FLOW SIMULATION ON UNSTRUCTURED/HYBRID GRIDS

  • 摘要: 间断Galerkin有限元方法(discontinuous Galerkin method, DGM) 因具有计算精度高、模板紧致、易于并行等优点, 近年来已成为非结构/混合网格上广泛研究的高阶精度数值方法. 但其计算量和内存需求量巨大, 特别是对于网格规模达到百万甚至数千万的大型三维实际复杂外形问题, 其计算量和存储量对计算资源的消耗是难以承受的. 基于“混合重构”的DG/FV 格式可以有效降低DGM 的计算量和存储量. 本文将DDG 黏性项离散方法推广应用于DG/FV 混合算法, 得到新的DDG/FV混合格式, 以进一步提高DG/FV混合算法对于黏性流动模拟的计算效率. 通过Couette流动、层流平板边界层、定常圆柱绕流, 非定常圆柱绕流和NACA0012 翼型绕流等二维黏性流算例, 优化了DDG 通量公式中的参数选择, 验证了DDG/FV 混合格式对定常和非定常黏性流模拟的精度和计算效率, 并与广泛使用的BR2-DG 格式的计算结果和效率进行对比研究. 一系列数值实验结果表明, 本文构造的DDG/FV混合格式在二维非结构/混合网格的Navier-Stokes 方程求解中, 在达到相同的数值精度阶的前提下, 相比BR2-DG格式, 对于隐式时间离散的定常问题计算效率提高了2 倍以上, 对于显式时间离散的非定常问题计算效率提高1.6 倍, 并且在一些算例中, 混合格式具有更优良的计算稳定性. DDG/FV 混合格式提升了计算效率和稳定性, 具有良好的应用前景.

     

  • [1] 张来平, 贺立新, 刘伟等. 基于非结构/混合网格的高阶精度格式研究进展. 力学进展, 2013, 43(2): 202-23
    [1] (Zhang Laiping, He Lixin, Liu Wei, et al.Reviews of high-order methods on unstructured and hybrid grid. Advances in Mechanics, 2013, 43(2): 202-23 (in Chinese))
    [2] Kroll N.ADIGMA - A European initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications. Springer International Publishing, 2010
    [3] Kroll N, Hirsch C, Bassi F, et al.IDIHOM: Industrialization of High-order Methods - A Top-down Approach. Springer International Publishing, 2015
    [4] Arnold D, Brezzi F, Cockburn B, et al.Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal, 2002, 39(5): 1749-1779
    [5] Douglas JJ, Dupont T.Interior penalty procedures for elliptic and parabolic Galerkin method. Lecture Notes in Physics, 1976, 58: 207-216
    [6] Bassi F, Rebay S.A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics, 1997, 131(2): 267-279
    [7] Cockburn B, Shu CW.The local discontinuous Galerkin method for time-dependent convection-diffusion systems. Society for Industrial and Applied Mathematics, 1998, 35(6): 2440-2463
    [8] Bassi F, Rebay S, Mariotti G, et al.A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows//The 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, Technologisch Instituut, Antwerpen, Belgium, 1997: 99-108
    [9] Peraire J, Persson PO.The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM Journal on Scientific Computing, 2008, 30(4): 1806-1824
    [10] Hartmann R, Houston P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations I: Method formulation. International Journal of Numerical Analysis} \& Modeling, 2005, 3(2006): 141-162
    [11] Hartmann R, Houston P.Symmetric interior penalty DG methods for the compressible Navier-Stokes equations II: Goal-oriented a posteriori error estimation. International Journal of Numerical Analysis & Modeling, 2005, 3(2006): 141-162
    [12] Van Leer B, Nomura S. Discontinuous Galerkin method for diffusion. AIAA Paper 2005-5108, 2005
    [13] Van Leer B, Lo M. A discontinuous Galerkin method for diffusion based on recovery. AIAA Paper 2007-4083, 2007
    [14] Liu H, Yan J.The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM Journal on Numerical Analysis, 2008, 47(1): 675-698
    [15] Liu H, Yan J.The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Communications in Computational Physics, 2010, 8(3): 541-564
    [16] Zhang M, Yan J.Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. Journal of Scientific Computing, 2012, 52(3): 638-655
    [17] Cheng J, Yang X, Liu X, et al.A direct discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. Journal of Computational Physics, 2016, 327: 484-502
    [18] Cheng J, Liu XD, Yang XQ, et al. A direct discontinuous Galerkin method for computation of turbulent flows on hybrid grids. AIAA Paper 2016-3333, 2016
    [19] Cockburn B, Luskin M, Shu CW, et al.Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Mathematics of Computation, 2003, 72(242): 577-606
    [20] Ryan JK, Shu CW, Atkins H.Extension of a post processing technique for the discontinuous Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM Journal on Scientific Computing, 2006, 26(3): 821-843
    [21] Dumbser M, Zanotti O.Very high order $\text P_\text N\text P_\text M$ schemes on unstructured meshes for the resistive relativistic MHD equations. Journal of Computational Physics, 2009, 228(18): 6991-7006
    [22] Dumbser M.Arbitrary high order $\text P_\text N\text P_\text M$ schemes on unstructured meshes for the compressible Navier-Stokes equations . Computers & Fluids, 2010, 39(1): 60-76
    [23] Luo H, Luo L, Nourgaliev R, et al.A reconstructed discontinuous Galerkin method for the compressible Navier-Stokes equations on arbitrary grids. Journal of Computational Physics, 2010, 229(19): 6961-6978
    [24] Luo H, Luo L, Ali A, et al.A parallel, reconstructed discontinuous Galerkin method for the compressible flows on arbitrary grids. Communications in Computational Physics, 2010, 9(2): 363-389
    [25] 张来平, 刘伟, 贺立新等. 基于"静动态"重构的间断Galerkin 有限元/有限体积混合格式. 力学学报, 2010, 42(6): 1013-1022
    [25] (Zhang Laiping, Liu Wei, He Lixin et al. A class of discontinuous Galerkin/finite volume hybrid schemes based on the `static re-construction' and `dynamic re-construction'. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1013-1022 (in Chinese))
    [26] 张来平, 李明, 刘伟等. 基于非结构/混合网格的高阶精度DG/FV混合方法研究进展. 空气动力学学报, 2014, 32(6): 717-726
    [26] (Zhang Laiping, Li Ming, Liu Wei, et al.Recent development of high order DG/FV hybrid schemes. Acta Aerodynamica Sinica, 2014, 32(6): 717-726 (in Chinese))
    [27] 李明, 刘伟, 张来平等. 高阶精度DG/FV混合方法在二维黏性流动模拟中的推广. 空气动力学学报, 2015, 33(1): 17-24
    [27] (Li Ming, Liu Wei, Zhang Laiping, et al.Applications of high order hybrid DG/FV methods for 2D viscous flows. Acta Aerodynamica Sinica, 2015, 33(1): 17-24 (in Chinese))
    [28] Zhang LP, Wei L, He LX, et al.A class of hybrid DG/FV methods for conservation laws I: Basic formulation and one-dimensional systems. Journal of Computational Physics, 2012, 231(4): 1081-1103
    [29] Zhang LP, Liu W, He LX, et al.A class of hybrid DG/FV methods for conservation laws II: Two-dimensional cases. Journal of Computational Physics, 2012, 231(4): 1104-1120
    [30] Zhang LP, Liu W, He LX, et al.A Class of hybrid DG/FV methods for conservation laws III: Two-dimensional Euler equations. Communications in Computational Physics, 2012, 12(1): 284-314
    [31] Zhang LP, Liu W, Li M, et al.A class of DG/FV hybrid schemes for conservation law IV: 2D viscous flows and implicit algorithm for steady cases. Computers & Fluids, 2014, 97(6): 110-125
    [32] 刘伟, 张来平, 赫新等. 基于Newton/Gauss-Seidel 迭代的高阶精度DGM隐式计算方法研究. 力学学报, 2012, 44(4): 792-796
    [32] (Liu Wei, Zhang Laiping, He Xin, et al.An implicit algorithm for high-order discontinuous Galerkin method based on Newton/Gauss-Seidel iterations. Chinese Journal of Theoretical and Applied Mechanics. 2012, 44(4): 792-796 (in Chinese))
    [33] 王年华, 李明, 张来平. 非结构网格二阶有限体积法中黏性通量离散格式精度分析与改进. 力学学报, 2018, 50(3): 527-537
    [33] (Wang Nianhua, Li Ming, Zhang Laiping.Accuracy analysis and improvement of viscous flux schemes in unstructured second-order finite-volume discretization. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 527-537 (in Chinese))
    [34] 王年华, 张来平, 赵钟等. 基于制造解的非结构二阶有限体积离散格式的精度测试与验证. 力学学报, 2017, 49(3): 627-637
    [34] (Wang Nianhua, Zhang Laiping, Zhao Zhong, et al.Accuracy verification of unstructured second-order finite volume discretization schemes based on the method of manufactured solutions. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 627-637 (in Chinese))
    [35] Arnold DN, Brezzi F, Cockburn B, et al.Discontinuous Galerkin Methods for Elliptic Problems. Discontinous Galerkin Method, Lecture Notes in Computational Science and Engineering, Berlin: Springer, 2000
    [36] Gautier R, Biau D, Lamballais E.A reference solution of the flow over a circular cylinder at $\text{Re}=40$. Comput. Fluids, 2013, 75: 103-111
    [37] Rogers SE.Numerical solution of the incompressible Navier-Stokes equations. NASA Technical Memorandum 102199, November, 1990
    [38] Collis SS.Discontinuous Galerkin methods for turbulence simulation. Center for Turbulence Research Proceedings of the Summer Program, 2002
    [39] Williamson C.Oblique and parallel modes of vortex shedding in the wake of a cylinder at low Reynolds numbers. J. Fluid Mech, 1989, 206: 579-627
  • 加载中
计量
  • 文章访问数:  1316
  • HTML全文浏览量:  190
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 刊出日期:  2018-11-18

目录

    /

    返回文章
    返回