EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C1连续型广义有限元格式

田荣

田荣. C1连续型广义有限元格式[J]. 力学学报, 2019, 51(1): 263-277. doi: 10.6052/0459-1879-18-188
引用本文: 田荣. C1连续型广义有限元格式[J]. 力学学报, 2019, 51(1): 263-277. doi: 10.6052/0459-1879-18-188
Tian Rong. A GFEM WITH C$^1$ CONTINUITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 263-277. doi: 10.6052/0459-1879-18-188
Citation: Tian Rong. A GFEM WITH C$^1$ CONTINUITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 263-277. doi: 10.6052/0459-1879-18-188

C1连续型广义有限元格式

doi: 10.6052/0459-1879-18-188
基金项目: 1) 国家重点研发计划(2016YFB0201002),国家自然科学基金(11472274,91530319)和科学挑战专题(JCKY2016212A502)资助项目.
详细信息
    作者简介:

    作者简介: 2) 田荣, 研究员, 主要研究方向: 计算力学与高性能计算.E-mail: tian_rong@iapcm.ac.cn

  • 中图分类号: TB115,O346.1;

A GFEM WITH C$^1$ CONTINUITY

  • 摘要: C$^{1}$连续,即一阶导数连续.C$^{1}$连续型插值格式具有同时适用于离散PDE的弱形式与强形式的优点--即一种插值格式可以在使用PDE弱形式还是强形式之间做出选择,从而构造出更加高效的数值方法.由于单位分解广义有限元方法 (PUFEM, Babu${\check{ s}}$ka andMelenk(1997)),允许用户根据局部解的特征自定义任意高阶局部近似,具有精度高、程序实现与传统有限元相容性好的特点而受到广泛关注.但是,其总体近似函数的光滑性是由其所采用的单位分解函数--一般为标准有限元形函数--的光滑性所决定,因此多为C$^{0}$连续.如何在C$^{0}$连续标准有限元形函数的基础上,构造出满足C$^{1}$连续的总体近似函数,是一个仍未解决的问题.本文在作者前期研究的无额外自由度的单位分解插值格式的基础上,仅基于C$^{0}$标准有限元形函数,构造出至少C$^{1}$连续的无额外自由度单位分解格式.针对Poisson方程,讨论了该格式对PDE弱形式与强形式的离散.测试结果表明,方法可以同时用于弱形式与强形式的数值求解,而且可以在不改变网格和自由度数的前提下,获得高阶收敛.使用该插值格式的条件是:网格须是直角坐标网格(不要求均匀).该插值格式可以同时用于流体力学问题和使用欧拉背景网格求解动量方程的固体力学方法,如材料物质点法(materialpoint method).对于强形式的欧拉网格求解,该插值格式与"差分"不同之处在于,它具有有限元一样的在任意点处进行"插值"的特点.对于弱形式的积分求解,由于该插值格式具有导数连续性,可以允许积分网格独立于插值网格.这一特点将使得弱形式的数值积分的实施更加灵活方便.

     

  • [1] Babuška I, Melenk JM.Partition of unity method. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758
    [2] Melenk JM, Babuška I.The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 289-314
    [3] Babuška I, Caloz G, Osborn JE.Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J Numerical Analysis, 1994, 31: 945-981
    [4] Duarte CA, Oden JT.An h-p adaptive method using clouds. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4): 237-262
    [5] Oden JT, Duarte CA, Zienkiewicz OC.A new cloud-based hp finite element method. Computer Methods in Applied Mechanics and Engineering, 1998, 153(1-2): 117-126
    [6] Shi GH.Manifold method of material analysis Transactions of the 9th Army Conference on Applied Mathematics and Computing, Report No. 92-1, U.S. Army Research Office, 1991
    [7] 刘登学, 张友良, 刘高敏. 基于适合分析T样条的高阶数值流形方法. 力学学报, 2017, 49(1): 212-222
    [7] (Liu Dengxue, Zhang Youliang, Liu Gaomin.Higher-order numerical manifold method based on analysis-suitable T-spline. Chinese Journal of} {\it Theoretical and Applied Mechanics, 2017, 49(1): 212-222 (in Chinese))
    [8] 邵玉龙, 段庆林, 高欣等. 自适应一致性高阶无单元伽辽金法. 力学学报, 2017, 49(1): 105-116
    [8] (Shao Yulong, Duan Qinglin, Gao Xin, et al.Adaptive consistent high order element-free Galerkin method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116(in Chinese))
    [9] 徐栋栋, 郑宏, 杨永涛等. 多裂纹扩展的数值流形法. 力学学报, 2015, 47(3): 471-481
    [9] (Xu Dongdong, Zheng Hong, Yang Yongtao, et al.Multiple crack propagation based on the numerical manifold method. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 471-481 (in Chinese))
    [10] 江守燕, 杜成斌. 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型. 力学学报, 2015, 47(6): 1037-1045
    [10] (Jiang Shouyan, Du Chengbin.Numerical model for identification of internal defect or inclusion based on extended finite elememt methods. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1037-1045 (in Chinese))
    [11] Strouboulis T, Babuška I, Copps K.The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1-3): 43-69
    [12] Strouboulis T, Copps K, Babuška I.The generalized finite element method: an example of its implementation and illustration of its performance. International Journal for Numerical Methods in Engineering, 2000, 47: 1401-1417
    [13] Strouboulis T, Copps K, Babuška I.The generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(32-33): 4081-4193
    [14] Strouboulis T, Zhang L, Babuška I.Generalized finite element method using mesh-based handbooks: Application to problems in domains with many voids. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 3109-3161
    [15] Strouboulis T, Zhang L, Babuška I. p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems. International Journal for Numerical Methods in Engineering, 2004, 60: 1639-1672
    [16] Strouboulis T, Zhang L, Wang D, et al.A posteriori error estimation for generalized finite element methods. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 852-879
    [17] Strouboulis T, Babuška I, Hidajat R.The generalized finite element method for Helmholtz equation: Theory, computation, and open problems. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 4711-4731
    [18] Strouboulis T, Hidajat R, Babuška I.The generalized finite element method for Helmholtz equation, part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. Computer Methods in Applied Mechanics and Engineering, 2008, 197: 364-380
    [19] Duarte CA, Babuska I, Oden JT.Generalized finite element methods for three-dimensional structural mechanics problems. Computers & Structures, 2000, 77: 215-232
    [20] Duarte CA, Hamzeh ON, Liszka TJ, et al.A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 2227-2262
    [21] Simone A, Duarte CA, Van der Giessen E. A generalized finite element method for polycrystals with discontinuous grain boundaries. International Journal for Numerical Methods in Engineering, 2006, 67: 1122-1145
    [22] Duarte CA, Kim DJ.Analysis and applications of a generalized finite element method with global-local enrichment functions. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6-8): 487-504
    [23] O'Hara P, Duarte CA, Eason T. Generalized finite element analysis for three dimensional problems exhibiting sharp thermal gradients. Computer Methods in Applied Mechanics and Engineering, 2009, 198: 1857-1871
    [24] 张雄, 刘岩. 无网格法. 北京:清华大学出版社/Springer出版社, 2004
    [24] (Zhang Xiong, Liu Yan. Meshless Methods.Beijing: Tsinghua University Press/Springer Press, 2004 (in Chinese))
    [25] 梁国平, 何江衡. 广义有限元方法-一类新的逼近空间. 力学进展, 1995, 25(4): 562-565
    [25] (Liang Guoping, He Jiangheng.Generalized finite element method-A new finite element space. Advances in Mechanics, 1995, 25(4): 562-565 (in Chinese))
    [26] 李录贤, 刘书静, 张慧华等. 广义有限元方法研究进展. 应用力学学报, 2009, 26(1): 96-108
    [26] (Li Luxian, Liu Shujing, Zhang Huihua, et al.Researching progress of generalized finite element method. Chinese Journal of Applied Mechanics, 2009, 26(1): 96-108 (in Chinese))
    [27] 龙驭球, 龙志飞, 岑松. 新型有限元论. 北京: 清华大学出版社, 2005
    [27] (Long Yuqiu, Long Zhifei, Cen Song.Advanced Finite Element Method. Beijing: Tsinghua University Press, 2005(in Chinese))
    [28] 刘欣,朱德懋. 基于单位分解的新型有限元方法研究. 计算力学学报, 2000, 17(4): 422-427
    [28] (Liu Xin, Zhu Demao.Study on partition of unit FEM. Chinese Journal of Computational Mechanics, 2000, 17(4): 422-427 (in Chinese))
    [29] Tian R.Extra-dof-free and linearly independent enrichments in GFEM. Computer Methods in Applied Mechanics and Engineering, 2013, 266: 1-22
    [30] Tian R, Wen LF.Improved XFEM-An extra-dof free, well- conditioning, and interpolating XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 639-658
    [31] Wen L, Tian R. An extra dof-free and well-conditioned XFEM//Proceedings of the 5th International Conference on Computational Methods , 28th-30th July 2014, Cambridge, G.R. Liu and Z.W. Guan Eds., 437. Scien Tech Publisher
    [32] 田荣, 文龙飞. 改进型XFEM 综述. 计算力学学报, 2016, 33(4): 469-477
    [32] (Tian Rong, Wen Longfei.Recent progresses on improved XFEM. Chinese Journal of Computational Mechanics, 2016, 33(4): 469-477 (in Chinese))
    [33] 王理想, 文龙飞, 王景焘等. 基于改进型XFEM 的裂纹分析并行软件实现. b中国科学: 技术科学, 已录用
    [33] (Wang Lixiang, Wen Longfei, Wang Jingtao, et al.Implementations of parallel software for crack analyses based on the improved XFEM. Scientia Sinica Technologica, Accepted (in Chinese))
    [34] 文龙飞, 王理想, 田荣. 动载下裂纹应力强度因子计算的改进型扩展有限元法. 力学学报, 2018, 50(3): 599-610
    [34] (Wen Longfei, Wang Lixiang, Tian Rong.Accurate computation on dynamic SIFs using improved XFEM. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 599-610 (in Chinese))
    [35] Tian R, Wen LF, Wang LX.Three-dimensional IXFEM for static crack problems. Computer Methods in Applied Mechanics and Engineering 2019, 343: 339-367
    [36] 张雄, 廉艳平, 刘岩等. 物质点法. 北京:清华大学出版社, 2013
    [36] (Zhang Xiong, Lian Yanping, Liu Yan, et al.Material Point Method. Beijing: Tsinghua University Press, 2013 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1122
  • HTML全文浏览量:  91
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回