EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钝后缘风力机翼型的环量控制研究

乔晨亮 许和勇 叶正寅

乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164
引用本文: 乔晨亮, 许和勇, 叶正寅. 钝后缘风力机翼型的环量控制研究[J]. 力学学报, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164
Qiao Chenliang, Xu Heyong, Ye Zhengyin. CIRCULATION CONTROL ON WIND TURBINE AIRFOIL WITH BLUNT TRAILING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164
Citation: Qiao Chenliang, Xu Heyong, Ye Zhengyin. CIRCULATION CONTROL ON WIND TURBINE AIRFOIL WITH BLUNT TRAILING EDGE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 135-145. doi: 10.6052/0459-1879-18-164

钝后缘风力机翼型的环量控制研究

doi: 10.6052/0459-1879-18-164
基金项目: 1) 国家自然科学基金(11472223)和中央高校基本科研业务费资助项目.
详细信息
    作者简介:

    作者简介: 2) 许和勇,教授,主要研究方向:计算流体力学、流动控制.E-mail:xuheyong@nwpu.edu.cn

    通讯作者:

    乔晨亮,许和勇,叶正寅

    乔晨亮,许和勇,叶正寅

    乔晨亮,许和勇,叶正寅

  • 中图分类号: V211.3;

CIRCULATION CONTROL ON WIND TURBINE AIRFOIL WITH BLUNT TRAILING EDGE

  • 摘要: 钝后缘风力机翼型具有结构强度高、对表面污染不敏感等优点,但其较大的阻力系数使得翼型的整体气动特性不够理想. 利用环量控制方法对钝后缘风力机翼型进行了流动控制,以改善钝后缘风力机翼型的气动特性,减弱尾迹区脱体涡强度. 通过对钝后缘风力机翼型环量控制方法进行相关的数值模拟,对比研究了环量控制方法的增升减阻效果, 研究了环量控制下翼型升阻力特性随射流动量系数的变化规律,并对不同射流动量系数下环量控制方法的气动品质因子和控制效率进行了分析. 研究结果表明:环量控制方法能够大幅提升钝后缘风力机翼型的升力系数,同时有效地降低翼型的阻力系数; 翼型的升力系数随射流动量系数的增大而增大,表现出很明显的分离控制阶段和超环量控制阶段的变化规律; 射流能耗的功率系数随射流动量系数的增大而增大,且增长速率逐渐增大;实施环量控制方法后叶片的输出功率同样随射流动量系数增大而增大,但增长速率逐渐降低. 总体来说,环量控制方法可以有效地改善钝后缘风力机翼型的气动特性以及功率输出特性,在大型风力机流动控制中具有很好的应用前景.

     

  • [1] Aubrun S, Leroy A, Devinant P.A review of wind turbine-oriented active flow control strategies. Experiments in Fluids, 2017, 58: 134
    [2] Standish KJ, Dam CPV.Aerodynamic analysis of blunt trailing edge airfoils. Journal of Solar Energy Engineering, 2003, 125(4): 479-487
    [3] 邓磊, 乔志德, 杨旭东等. 基于RANS方程大型风力机翼型钝尾缘修型气动性能计算. 太阳能学报, 2012, 33(4): 545-551
    [3] (Deng Lei, Qiao Zhide, Yang Xudong, et al.Aerodynamics performance computational of trailing-edge-blunting methods of flatback airfoil for large wind turbine based on rans equation. Acta Energiae Solaris Sinica, 2012, 33(4): 545-551(in Chinese))
    [4] Manolesos M, Voutsinas SG.Experimental study of drag-reduction devices on a flatback airfoil. AIAA Journal, 2016, 54(11): 3382-3396
    [5] Baker JP, Mayda EA, Dam CPV.Experimental analysis of thick blunt trailing-edge wind turbine airfoils. Journal of Solar Energy Engineering, 2006, 128(4): 422-431
    [6] Mertes CE, Singh MJ, Strike JA, et al. A study of flatback airfoil in dynamic motion. AIAA paper2011-349, 2011
    [7] Sanaye S, Hassanzadeh A.Multi-objective optimization of airfoil shape for efficiency improvement and noise reduction in small wind turbines. Journal of Renewable & Sustainable Energy, 2014, 6(5): 5-15
    [8] Baker J, Dam CPV.Drag reduction of blunt trailing-edge airfoil//Milano: International Colloquium on Bluff Bodies Aerodynamics and Applications, 2008: 20-24
    [9] 宋科, 郝礼书, 乔志德. 钝后缘翼型的后缘隔板减阻研究. 航空计算技术, 2010, 40(6): 62-65
    [9] (Song Ke, Hao Lishu, Qiao Zhide.Blunt trailing-edge airfoils drag reduction with splitter. Aeronautical Computing Technique, 2010, 40(6): 62-65(in Chinese))
    [10] Manolesos M, Voutsinas SG.Experimental study of drag-reduction devices on a flatback airfoil. AIAA Journal, 2016, 54(11): 3382-3396
    [11] Nikoueeyan P, Strike JA, Magstadt AS, et al.Characterization of the aerodynamic coefficients of a wind turbine airfoil with a gurney flap for flow control applications//Proceedings of the 32nd AIAA Applied Aerodyanmics Conference, Atlanta, 2014: 16-20
    [12] Naghiblahouti A, Hangan H, Lavoie P.Distributed forcing flow control in yhe wake of a blunt trailing edge profiled body using plasma actuators. Physics of Fluids, 2015, 27(3): 035110
    [13] Englar R, Jones G, Allan B, et al. 2-D circulation control airfoil benchmark experiments intended for cfd code validation. {AIAA Paper}2009-902, 2009
    [14] Coanda H.Lifting device Coanda effect. US: 3261162, 1936
    [15] Jones GS, Joslin RD. Proceedings of the 2004 NASA/ONR circulation control workshop. NASA/CP: 2005-213509, 2005
    [16] Michailidis MG, Kanistras K, Agha M.Robust nonlinear control of the longitudinal flight dynamics of a circulation control fixed wing UAV//IEEE ed. IEEE Conference on Decision and Control, IEEE 56th Annual Conference on Decision and Control (CDC), Melbourne, 2017.
    [17] Chen F, Arieli R.Lift build-up on circulation control airfoils. Journal of Aircraft, 2016, 53(1): 231-242
    [18] Forster M, Steijl R. Numerical simulation of transonic circulation control. AIAA Paper20151709, 2015
    [19] 宋彦萍, 杨晓光, 李亚超等. 环量控制翼型中柯恩达效应的数值模拟. 工程热物理学报, 2010, 31(9): 1475-1479
    [19] (Song Yanping, Yang Xiaoguang, Li Yachao, et al.Numerical simulation of coanda effect in circulation control airfoil. Journal of Engineering Thermophysics, 2010, 31(9): 1475-1479(in Chinese))
    [20] Tongchitpakdee C, Benjanirat S, Sankar LN.Numerical studies of the effects of active and passive circulation enhancement concepts on wind turbine performance. Journal of Solar Energy Engineering, 2006, 128(4): 432-444
    [21] 冯立好, 王晋军, Choi KS.等离子体环量控制翼型增升的实验研究. 力学学报, 2013, 45(6): 815-821
    [21] (Feng Lihao, Wang Jinjun, Choi KS.Experimental investigation on lift increment of a plasma circulation control airfoil. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821(in Chinese))
    [22] 张艳华, 李林, 张登成等. 基于等离子体环量控制的翼型气动特性. 强激光与粒子束, 2017, 29(6): 50-55
    [22] (Zhang Yanhua, Li Lin, Zhang Chengcheng, et al.Aerodynamics of airfoil based on plasma circulation control. High Power Laser and Particle Beams, 2017, 29(6): 50-55(in Chinese))
    [23] 姜裕标, 张刘, 黄勇等. 内吹式襟翼环量控制翼型升力响应特性. 航空学报, 2018, 39(7): 121807
    [23] (Jiang Yubiao, Zhang Liu, Huang Yong, et al.Lift response characteristics of a circulation control airfoil with internally blown flap. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 121807(in Chinese))
    [24] Barone MF, Berg D. Aerodynamic and aeroacoustic properties of a flatback airfoil: An update. {AIAA Paper}2009271, 2009
    [25] Jameson A, Baker TJ. Multigrid solution of the Euler equations for aircraft configurations. AIAA Paper19840093, 1984
    [26] Roache PJ.Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 1997, 29(29):123-160
    [27] Jones GS, Viken SA, Washburn A E, et al. An active flow circulation controlled flap concept forgeneral aviation aircraft applications. {AIAA paper}20023157, 2002
    [28] Sedaghat A, Hassanzadeh A, Jamali J, et al.Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Applied Energy, 2017, 205: 781-789
    [29] Jones GS, Lin JC, Allan BG, et al.Overview of CFD validation experiments for circulation control applications at NASA. International Powered Lift Conference, London, 2008: 22-24
    [30] 朱自强, 吴宗成. 环量控制技术研究. 航空学报, 2016, 37(2): 411-428
    [30] (Zhu Ziqiang, Wu Zongcheng.Study of circulation control technology. Acta Aeronatica et Astronautica Sinica, 2016, 37(2): 411-428(in Chinese))
    [31] Seifert A.Closed-loop active flow control systems: Actuators// King R eds. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Berlin: Springer, 2007
    [32] Seifert A, Eliahu S, Greenblatt D, et al.Use of piezoelectric actuators for airfoil separation control (TN). AIAA Journal, 1998, 36(8): 1535-1537
    [33] Stalnov O, Kribus A, Seifert A.Evaluation of active flow control applied to wind turbine blade section. Journal of Renewable & Sustainable Energy, 2010, 2: 063101
  • 加载中
计量
  • 文章访问数:  1260
  • HTML全文浏览量:  126
  • PDF下载量:  243
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回