EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含肿瘤皮肤组织传热分析的广义有限差分法

李艾伦 傅卓佳 李柏纬 陈文

李艾伦, 傅卓佳, 李柏纬, 陈文. 含肿瘤皮肤组织传热分析的广义有限差分法[J]. 力学学报, 2018, 50(5): 1198-1205. doi: 10.6052/0459-1879-18-155
引用本文: 李艾伦, 傅卓佳, 李柏纬, 陈文. 含肿瘤皮肤组织传热分析的广义有限差分法[J]. 力学学报, 2018, 50(5): 1198-1205. doi: 10.6052/0459-1879-18-155
Li Ailun, Fu Zhuojia, Li Powei, Chen Wen. GENERALIZED FINITE DIFFERENCE METHOD FOR BIOHEAT TRANSFER ANALYSIS ON SKIN TISSUE WITH TUMORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1198-1205. doi: 10.6052/0459-1879-18-155
Citation: Li Ailun, Fu Zhuojia, Li Powei, Chen Wen. GENERALIZED FINITE DIFFERENCE METHOD FOR BIOHEAT TRANSFER ANALYSIS ON SKIN TISSUE WITH TUMORS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1198-1205. doi: 10.6052/0459-1879-18-155

含肿瘤皮肤组织传热分析的广义有限差分法

doi: 10.6052/0459-1879-18-155
基金项目: 1)国家自然科学基金(11772119, 11572111)和中央高校基本业务费(2016B06214)资助项目.
详细信息
    作者简介:

    2)傅卓佳, 教授, 主要研究方向: 计算力学及工程仿真软件. E-mail: paul212063@hhu.edu.cn

    通讯作者:

    傅卓佳

  • 中图分类号: O302;

GENERALIZED FINITE DIFFERENCE METHOD FOR BIOHEAT TRANSFER ANALYSIS ON SKIN TISSUE WITH TUMORS

  • 摘要: 生物传热分析在低温外科手术、肿瘤热疗、病热诊断等临床医学治疗和诊断中有着广泛的应用. 由于健康皮肤组织内肿瘤的存在使得肿瘤附近区域的温度会明显升高, 这一特性常被用于检测皮肤组织内的肿瘤生长, 因此有必要开展生物传热数值分析的研究. 本文以含肿瘤的皮肤组织为研究对象, 将一种新型区域型无网格配点法——广义有限差分法应用于能描述含肿瘤皮肤组织传热过程的Pennes方程求解. 广义有限差分法利用泰勒展开式与移动最小二乘法将计算区域内的每个离散点上的物理量导数表示成其与邻近点物理量及权重系数的线性组合, 进而构建得到仅含各离散点未知物理量的线性方程组. 该方法不仅具有无需划分网格、避免数值积分等无网格配点法的优点, 同时还克服了大多数无网格配点法中插值矩阵高度病态的问题, 为此类方法在大规模工程数值计算中的应用提供了可能性. 本文首先介绍了模拟含肿瘤皮肤组织传热过程的广义有限差分法离散模型, 随后通过不含肿瘤与含规则形状肿瘤的基准算例, 检验广义有限差分法的计算精度与收敛性; 在此基础上, 通过数值模拟研究不同肿瘤形状及肿瘤位置分布对皮肤组织内温度分布的影响.

     

  • [1] 卢天健, 徐峰. 电磁加热条件下皮肤组织的生物热力学行为. 力学学报, 2010, 42(4): 719-732
    [1] (Lu Tianjian, Xu Feng.The biothermomechanical behavior of skin tissue under electromagnetic heating. Chinese Journal of Theoretical and Applied Mechanics, 2010, 24(4): 719-732 (in Chinese))
    [2] 张永, 陈斌, 李东等. 脉冲激光照射生物组织中非傅里叶导热的研究. 工程热物理学报, 2018, 39(3): 598-602
    [2] (Zhang Yong, Chen Bin, Li Dong, et al.Investigation of non-Fourier heat transfer in biological tissues irradiated by pulsed laser. Journal of Engineering Thermophysics, 2018, 39(3): 598-602 (in Chinese))
    [3] 孙海祥, 赵金哲, 王宏等. 基于动态生物组织参数的微波热消融仿真研究. 生物医学工程研究, 2016, 35(1): 12-17
    [3] (Sun Haixiang, Zhao Jinzhe, Wang Hong, et al.Simulation analysis of microwave ablation based on dynamic biological tissue properties. Journal of Biomedical Engineering Research, 2016, 35(1): 12-17 (in Chinese))
    [4] 杨洁, 李剀扬, 张少平. 基于有限元法的生物体三维温度场无损重构. 生物医学工程研究, 2006, 25(1): 28-31
    [4] (Yang Jie, Li Kaiyang, Zhang Shaoing.The non-invasive 3-D temperature field reconstruction of organism by finite element method. Journal of Biomedical Engineering Research, 2006, 25(1): 28-31 (in Chinese))
    [5] 刘静, 任泽霈. 无损重构生物体温度场和内热源场的简化边界元途径. 航天医学与医学工程, 1996(2): 125-129
    [5] (Liu Jing, Ren Zepei.A simplified boundary element method for noninvasive reconstruction of spatial field of temperature and inner heat source in biological bodies. Space Medicine and Medical Engineering, 1996(2): 125-129 (in Chinese))
    [6] Attar M M, Haghpanahi M, Shahverdi H, et al.Thermo-mechanical analysis of soft tissue in local hyperthermia treatment. Journal of Mechanical Science & Technology, 2016, 30(3): 1459-1469
    [7] 邓中山, 刘静. 低温外科手术中多维相变问题的双倒易边界元模拟. 上海理工大学学报, 2001, 23(3): 217-220
    [7] (Deng Zhongshan, Liu Jing.Simulation on the multi-dimensional phase change problem during cryosurgery by the dual reciprocity boundary element method. Journal of University of Shanghai for Science and Technology. 2001, 23(3): 217-220 (in Chinese))
    [8] 刘朝霞, 吴声昌, 常谦顺等. 特解边界元法数值解三维Pennes方程及其应用. 计算物理, 2001, 18(5): 000473-476
    [8] (Liu Zhaoxia, Wu Shengchang, Chang Qianshun, et al. Numerical methods of three-dimensional Pennes equation using particular solution BEM and their applications. Chinese Journal of Computational Physics, 2001, 18(5): 000473-476 (in Chinese))
    [9] Dehghan M, Sabouri M.A spectral element method for solving the Pennes bioheat transfer equation by using triangular and quadrilateral elements. Applied Mathematical Modelling, 2012, 36(12): 6031-6049
    [10] 师晋红, 傅卓佳, 陈文. 边界节点法计算二维瞬态热传导问题. 应用数学和力学, 2014, 35(2): 111-120
    [10] (Shi Jinhong, Fu Zhuojia, Chen Wen.Boundary knot method for 2D transient heat conduction problems. Applied Mathematics and Mechanics, 2014, 35(2): 111-120 (in Chinese))
    [11] 戴艳俊, 吴学红, 陶文铨. 三维不规则区域热传导问题无网格方法的数值模拟. 工程热物理学报, 2011, 32(7): 1173-1177
    [11] (Dai Yanjun, Wu Xuehong, Tao Wenquan.Weighted least-squares collocation method (WLSCM) for 3-D heat conduction problems in irregular domain. Journal of Engineering Thermophysics, 2011, 32(7): 1173-1177 (in Chinese))
    [12] 程荣军, 程玉民. 带源参数的二维热传导反问题的无网格方法. 力学学报, 2007, 39(6): 843-847
    [12] (Cheng Rongjun, Cheng Yumin.The meshless method for a two-dimensional inverse heat conduction problem with a source parameter. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(6): 843-847 (in Chinese))
    [13] Bedin L, Bazán FSV.On the 2D bioheat equation with convective boundary conditions and its numerical realization via a highly accurate approach. Applied Mathematics & Computation, 2014, 236(3): 422-436
    [14] Jamil M, Ng EYK.Evaluation of meshless radial basis collocation method (RBCM) for heterogeneous conduction and simulation of temperature inside the biological tissues. International Journal of Thermal Sciences, 2013, 68(6): 42-52
    [15] Cao LL, Qin QH, Zhao N.An RBF-MFS model for analysing thermal behaviour of skin tissues. International Journal of Heat and Mass Transfer, 2010, 53(7): 1298-1307
    [16] Fu ZJ, Xi Q, Ling L, et al.Numerical investigation on the effect of tumor on the thermal behavior inside the skin tissue. International Journal of Heat & Mass Transfer, 2017, 108: 1154-1163.
    [17] 邵玉龙, 段庆林, 高欣等. 自适应一致性高阶无单元伽辽金法. 力学学报, 2017, 49(1): 105-116
    [17] (Shao Yulong, Duan Qinglin, Gao Xin, et al.Adaptive consistent high order element-free Galerkin method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116 (in Chinese))
    [18] 朱跃, 姜胜耀, 杨星团等. 粒子法中压力振荡的机理研究. 力学学报, 2018, 50(3): 688-698
    [18] (Zhu Yue, Jiang Shengyao, Yang Xingtuan, et al.Mechanism analysis of pressure oscillation in particle method. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 688-698 (in Chinese))
    [19] 杨建军, 郑健龙. 无网格局部强弱法求解不规则域问题. 力学学报, 2017, 49(3): 659-666
    [19] (Yang Jianjun, Zheng Jianlong.Meshless local strong-weak (MLSW) method for irregular domain problems. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 659-666 (in Chinese))
    [20] 张雄, 刘岩, 马上. 无网格法的理论及应用. 力学进展, 2009, 39(1): 1-36
    [20] (Zhang Xiong, Liu Yan, Ma Shang.Meshfree methods and their applications. Advances in Mechanics, 2009, 39(1): 1-36 (in Chinese))
    [21] Wu ZM.Compactly supported positive definite radial functions. Advances in Computational Mathematics, 1995, 4(1): 283-292
    [22] 陈少林, 李燕秀. 一种高效的局部径向基点插值无网格方法. 固体力学学报, 2009, 30(1): 100-105
    [22] (Chen Shaolin, Li Yanxiu.An efficient meshless method through local radial point interpolation. Chinese Journal of Solid Mechanics, 2009, 30(1): 100-105 (in Chinese))
    [23] 习强, 傅卓佳, 蔡加正. 基于结合扩展精度技术的基本解方法的非线性功能梯度材料热传导问题求解. 计算机辅助工程, 2016, 25(4): 7-14
    [23] (Xi Qiang, Fu Zhuojia, Cai Jiazheng.Heat conduction solution of nonlinear functionally graded material based on fundamental solution method combined with extended precision arithmetic. Computer Aided Engineering, 2016, 25(4): 7-14 (in Chinese))
    [24] Benito JJ, Ureña F, Gavete L.Influence of several factors in the generalized finite difference method. Applied Mathematical Modelling, 2001, 25(12): 1039-1053
    [25] Chen J, Gu Y, Wang M, et al.Application of the generalized finite difference method to three-dimensional transient electromagnetic problems. Engineering Analysis with Boundary Elements, 2017, 92: 257-266.
    [26] Li PW, Fan CM.Generalized finite difference method for two-dimensional shallow water equations. Engineering Analysis with Boundary Elements, 2017, 80:5 8-71.
    [27] Pennes HH.Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1948, 1(2):93-122
    [28] Deng ZS, Liu J.Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, Journal of Biomechanical Engineering, 2002, 124: 638-649
    [29] Filho AMG, Nogueira LL, Silveira JVC, et al.Solution of the inverse bioheat transfer problem for the detection of tumors by genetic algorithms //Osvaldo Gervasi, Beniamino Murgante, Sanjay Misra, et al eds. Computational science and its applications-ICCS 2017, 17th International Conference on Computational Science and Its Applications, Trieste, 2017.6.3-6, Germany, Springer, 2017: 441-452
    [30] Gavete L, Benito JJ, Ureña F.Generalized finite differences for solving 3D elliptic and parabolic equations. Applied Mathematical Modelling, 2016, 40(2): 955-965
  • 加载中
计量
  • 文章访问数:  929
  • HTML全文浏览量:  114
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-09
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回