EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双模态振幅调制原子力显微术相互作用区转变研究

周锡龙 李法新

周锡龙, 李法新. 双模态振幅调制原子力显微术相互作用区转变研究[J]. 力学学报, 2018, 50(5): 1104-1114. doi: 10.6052/0459-1879-18-137
引用本文: 周锡龙, 李法新. 双模态振幅调制原子力显微术相互作用区转变研究[J]. 力学学报, 2018, 50(5): 1104-1114. doi: 10.6052/0459-1879-18-137
Zhou Xilong, Li Faxi. INVESTIGATION ON TRANSITION BETWEEN TIP-SAMPLE INTERACTION REGIMES IN BIMODAL AMPLITUDE MODULATION ATOMIC FORCE MICROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1104-1114. doi: 10.6052/0459-1879-18-137
Citation: Zhou Xilong, Li Faxi. INVESTIGATION ON TRANSITION BETWEEN TIP-SAMPLE INTERACTION REGIMES IN BIMODAL AMPLITUDE MODULATION ATOMIC FORCE MICROSCOPY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1104-1114. doi: 10.6052/0459-1879-18-137

双模态振幅调制原子力显微术相互作用区转变研究

doi: 10.6052/0459-1879-18-137
基金项目: 1) 国家自然科学基金(11502182)和中央高校基本科研业务费专项资金(2018IA001)资助项目.
详细信息
    作者简介:

    2) 周锡龙, 教授, 主要研究方向: 微纳米力学测试方法开发与应用. E-mail: xlzhou@whut.edu.cn

    通讯作者:

    周锡龙

  • 中图分类号: TH742.9;

INVESTIGATION ON TRANSITION BETWEEN TIP-SAMPLE INTERACTION REGIMES IN BIMODAL AMPLITUDE MODULATION ATOMIC FORCE MICROSCOPY

  • 摘要: 双模态振幅调制原子力显微术测试或成像过程中存在引力区和斥力区两种相互作用区. 开展双模态振幅调制原子力显微术针尖样品相互作用区转变的研究, 对于在特定作用区内成像的参数设置、相互作用区范围的控制, 以及对成像结果的正确理解和解释尤为重要. 将有限差分法和同相正交法相结合, 采用数值模拟方法研究了探针模态自由振幅大小设定、样品力学性能变化以及模态激励频率的设置对双模态振幅调制原子力显微术相互作用区转变的影响. 研究结果表明, 探针模态自由振幅之和越大, 则引力区向斥力区转变时的临界设定点越大, 使探针位于引力区的设定点的范围越小. 样品的弹性模量越大、黏度系数越小, 探针在接近样品过程中引力区向斥力区转变发生越早, 即引力区设定点的范围越小. 偏离自由共振频率对探针进行激励时, 引力区的范围均小于以自由共振频率激励时的引力区范围, 探针运动状态的突变并不一定对应相互作用区的转变, 且不能将相位值是否高于或低于90°作为判定探针位于引力区或斥力区的依据.

     

  • 1 Binnig G, Quate CF, Gerber C.Atomic force microscope. Physical Review Letters, 1986, 56(9): 930-933
    2 Gross L, Schuler B, Pavlicek N, et al.Atomic force microscopy for molecular structure elucidation. Angewandte Chemie-International Edition, 2018, 57(15): 3888-3908
    3 de la Torre B, Ellner M, Pou P, et al. Atomic-scale variations of the mechanical response of 2D materials detected by noncontact atomic force microscopy. Physical Review Letters, 2016, 116(24): 245502
    4 Kim D, Sahin O.Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy. Nature Nanotechnology, 2015, 10(3): 264-269
    5 Dufrene YF, Ando T, Garcia R, et al.Imaging modes of atomic force microscopy for application in molecular and cell biology. Nature Nanotechnology, 2017, 12(4): 295-307
    6 Zhang J, Chen P C, Yuan BK, et al.Real-space identification of intermolecular bonding with atomic force microscopy. Science, 2013, 342(6158): 611-614
    7 Schillers H, Rianna C, Schape J, et al.Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Scientific Reports, 2017, 7: 5117
    8 García R.Amplitude Modulation Atomic Force Microscopy. WILEY-VCH Verlag & Co. KGaA, Weinheim, Germany, 2010
    9 Garcia R, Perez R.Dynamic atomic force microscopy methods. Surface Science Reports, 2002, 47(6-8): 197-301
    10 魏征, 孙岩, 王再冉等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017, 49(6): 1301-1311
    10 (Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode atomic force microscopy. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1301-1311 (in Chinese))
    11 Garcia R, Herruzo ET.The emergence of multifrequency force microscopy. Nature Nanotechnology, 2012, 7(4): 217-226
    12 郑志月, 许瑞, 程志海. 多频原子力探针显微技术. 中国科学: 技术科学, 2016, 46: 437-450
    12 (Zheng Zhiyue, Xu Rui, Cheng Zhihai. Multi-frequency atomic force microscopy. Scientia Sinica Technologica, 2016, 46: 437-450 (in Chinese))
    13 Santos S, Lai CY, Olukan T, et al.Multifrequency AFM: From origins to convergence. Nanoscale, 2017, 9(16): 5038-5043
    14 Payton OD, Picco L, Scott TB.High-speed atomic force microscopy for materials science. International Materials Reviews, 2016, 61(8): 473-494
    15 Cartagena-Rivera AX, Wang WH, Geahlen RL, et al.Fast, multi-frequency, and quantitative nanomechanical mapping of live cells using the atomic force microscope. Scientific Reports, 2015, 5: 11692
    16 Haviland DB.Quantitative force microscopy from a dynamic point of view. Current Opinion in Colloid & Interface Science, 2017, 27: 74-81
    17 Rodriguez TR, Garcia R.Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever. Applied Physics Letters, 2004, 84(3): 449-451
    18 Martinez NF, Patil S, Lozano JR, et al.Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes. Applied Physics Letters, 2006, 89(15): 153115
    19 Proksch R.Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy. Applied Physics Letters, 2006, 89(11): 113121
    20 Lozano JR, Garcia R.Theory of multifrequency atomic force microscopy. Physical Review Letters, 2008, 100(7): 076102
    21 Stark RW.Dynamics of repulsive dual-frequency atomic force microscopy. Applied Physics Letters, 2009, 94(6): 063109
    22 Solares SD, Chawla G.Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode atomic force microscopy. Measurement Science and Technology, 2010, 21(12): 125502
    23 Shi S, Guo D, Luo JB.Enhanced phase and amplitude image contrasts of polymers in bimodal atomic force microscopy. RSC Advances, 2017, 7(19): 11768-11776
    24 Shi S, Guo D, Luo JB.Interfacial interaction and enhanced image contrasts in higher mode and bimodal mode atomic force microscopy. RSC Advances, 2017, 7(87): 55121-55130
    25 Kiracofe D, Raman A, Yablon D.Multiple regimes of operation in bimodal AFM: Understanding the energy of cantilever eigenmodes. Beilstein Journal of Nanotechnology, 2013, 4: 385-393
    26 Chakraborty I, Yablon DG.Cantilever energy effects on bimodal AFM: Phase and amplitude contrast of multicomponent samples. Nanotechnology, 2013, 24(47): 475706
    27 Damircheli M, Payam AF, Garcia R.Optimization of phase contrast in bimodal amplitude modulation AFM. Beilstein Journal of Nanotechnology, 2015, 6: 1072-1081
    28 Lozano JR, Garcia R.Theory of phase spectroscopy in bimodal atomic force microscopy. Physical Review B, 2009, 79(1): 014110
    29 Santos S.Phase contrast and operation regimes in multifrequency atomic force microscopy. Applied Physics Letters, 2014, 104(14): 143109
    30 郭万林, 台国安, 姜燕. 针尖的化学物理力学研究. 力学进展, 2005, 35(4): 585-599
    30 (Guo Wanlin, Tai Guoan, Jiang Yan. Research on probe's chemical and physical mechanics. Advances in Mechanics, 2005, 35(4): 585-599 (in Chinese))
    31 San Paulo A, Garcia R.Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy: a numerical study for compliant materials. Surface Science, 2001, 471(1-3): 71-79
    32 Lai CY, Barcons V, Santos S, et al.Periodicity in bimodal atomic force microscopy. Journal of Applied Physics, 2015, 118(4): 044905
    33 Guzman HV, Garcia PD, Garcia R.Dynamic force microscopy simulator (dForce): A tool for planning and understanding tapping and bimodal AFM experiments. Beilstein Journal of Nanotechnology, 2015, 6: 369-379
    34 Turner JA, Hirsekorn S, Rabe U, et al.High-frequency response of atomic-force microscope cantilevers. Journal of Applied Physics, 1997, 82(3): 966-979
    35 Labuda A, Kocun M, Lysy M, et al.Calibration of higher eigenmodes of cantilevers. Review of Scientific Instruments, 2016, 87(7): 073705
    36 Garcia R, San Paulo A.Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Physical Review B, 1999, 60(7): 4961-4967
    37 Santos S.Enhanced sensitivity and contrast with bimodal atomic force microscopy with small and ultra-small amplitudes in ambient conditions. Applied Physics Letters, 2013, 103(23): 231603
    38 Garcia R, Proksch R.Nanomechanical mapping of soft matter by bimodal force microscopy. European Polymer Journal, 2013, 49: 1897-1906
  • 加载中
计量
  • 文章访问数:  888
  • HTML全文浏览量:  74
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-22
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回