EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种横观各向同性强度准则及变换应力空间

万征 宋琛琛 赵晓光

万征, 宋琛琛, 赵晓光. 一种横观各向同性强度准则及变换应力空间[J]. 力学学报, 2018, 50(5): 1168-1184. doi: 10.6052/0459-1879-18-134
引用本文: 万征, 宋琛琛, 赵晓光. 一种横观各向同性强度准则及变换应力空间[J]. 力学学报, 2018, 50(5): 1168-1184. doi: 10.6052/0459-1879-18-134
Wan Zheng, Song Chenchen, Zhao Xiaoguang. ONE KIND OF TRANSVERSE ISOTROPIC STRENGTH CRITERION AND THE TRANSFORMATION STRESS SPACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1168-1184. doi: 10.6052/0459-1879-18-134
Citation: Wan Zheng, Song Chenchen, Zhao Xiaoguang. ONE KIND OF TRANSVERSE ISOTROPIC STRENGTH CRITERION AND THE TRANSFORMATION STRESS SPACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1168-1184. doi: 10.6052/0459-1879-18-134

一种横观各向同性强度准则及变换应力空间

doi: 10.6052/0459-1879-18-134
基金项目: 1) 国家自然科学青年基金(11402260) 和中国建筑科学研究院应用研究基金(20171602330710007)资助项目.
详细信息
    作者简介:

    2)万征,副研究员,主要研究方向:地下结构与土相互作用,混凝土及土的本构关系.E-mail:zhengw111@126.com

    通讯作者:

    万征

  • 中图分类号: TU43;

ONE KIND OF TRANSVERSE ISOTROPIC STRENGTH CRITERION AND THE TRANSFORMATION STRESS SPACE

  • 摘要: 考虑岩土介质在自然形成过程中产生的原生各向异性性质,将其简化为一种横观各向同性岩土材料.基于已提出的a强度准则,根据沉积面与有效滑移面在物理空间中位置的相互关系,采用两面的空间夹角作为度量岩土材料原生各向异性在加载条件下发挥强度作用的影响变量.并根据有效滑移面的物理概念,当沉积面与有效滑移面夹角越大,则摩擦特性潜力发挥的越充分,此时对应更高的强度应力比,反之则对应越小的强度应力比.基于上述思想,建立了考虑原生各向异性的强度应力比公式,将其用于修正a准则,进而得到了横观各向同性a准则公式.采用上述横观各向同性a准则公式向各向同性Von-Mises准则公式转换的变换思路,在横观各向同性a准则公式基础上,推导得到了变换应力公式,该公式可由横观各向同性应力空间转变为各向同性应力空间,利用所提出的变换应力方法,可方便的将传统的在偏平面上以Von-Mises准则为基础的二维模型转换为可考虑原生各向异性的三维模型.通过对岩土材料的强度以及真三轴条件下的应力应变关系试验数据预测,验证了所提的横观各向同性a准则及其变换应力公式的有效性及适用性.

     

  • [1] Oda M.Initial fabrics and their relations to mechanical properties of granular materials. Soils Found, 1972, 12(1): 17-36
    [2] Abelev AV, Lade PV.Effects of cross-anisotropy on three-dimensional behavior of sand. I: Stress-strain behavior and shear banding. J Eng Mech ASCE, 2003, 129(2): 160-166
    [3] Kirkgard MM, Lade PV.Anisotropic three-dimensional behavior of a normally consolidated clay. Canadian Geotechnical Journal, 1993, 30(4): 848-858
    [4] Duncan JM, Seed HB.Strength variation along failure surfaces in clay. Journal of Soil Mechanics & Foundations Div, 1966, 92(SM6): 81-104
    [5] Yong RN, Silvestri V.Anisotropic behaviour of a sensitive clay. Canadian Geotechnical Journal, 1979, 16(2): 335-350
    [6] Nishimura S, Minh NA, Jardine RJ.Shear strength anisotropy of natural London clay. G$\acute{e}$otechnique, 2007, 57(1): 49-62
    [7] Yamada Y, Ishihara K.Anisotropic deformation characteristics of sand under three-dimensional stress conditions. Soils Found, 1979, 19(2): 79-94
    [8] Ochiai H, Lade PV.Three-dimensional behavior of sand with anisotropic fabric. J Geotech. Eng, 1983, 109(10): 1313-1328
    [9] Miura S, Toki S.Anisotropy in mechanical properties and its simulation of sands sampled from natural deposits. Soils Found, 1984, 24(3): 69-84
    [10] Hight DW, Gens A, Symes MJ.The development of a new hollow cylinder appratus for investigating the effects of principal stress rotation in soils. Geotechnique, 1983, 33(4): 355-383
    [11] Tatsuoka F, Nakamura S, Huang CC, et al.Strength anisotropy and shear band direction in plane strain tests of sand. Soils Found, 1990, 30(1): 35-54
    [12] Pradhan TBS, Tatsuoka F, Horii N.Simple shear testing on sand in a torsional shear apparatus. Soils Found, 1988, 28(2): 95-112
    [13] Oda M, Nakayama H.Yield function for soil with anisotropic fabric. J Eng Mech ASCE, 1989, 115(1): 89-104
    [14] Li XS, Dafalias YF.Constitutive modeling of inherently anisotropic sand behavior. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(10): 868-880
    [15] Dafalias YF, Taiebat M.Rotational hardening with and without anisotropic fabric at critical state. G$\acute{e}$otechnique, 2014, 57(1): 49-62
    [15] Pietruszczak S, Lydzba D, Shao JF. Modelling of inherent anisotropy in sedimentary rocks. International Journal of Solids & Structures, 2002, 39: 637-648
    [16] Mroz Z, Maciejewski J.Failure criteria of anisotropically damaged materials based on the critical plane concept. International Journal for Numerical & Analytical Methods in Geomechanics, 2002, 26: 407-431
    [17] Hashiguchi K, Ozaki S, Okayasu T.Unconventional friction theory based on the subloading surface concept. International Journal of Solids and Structures, 2005, 42: 1705-1727
    [18] 张连卫, 张建民, 张嘎. 基于SMP 的粒状材料各向异性强度准则. 岩土工程学报, 2008, 30(8): 1107-1111
    [18] (Zhang Lianwei, Zhang Jianmin, Zhang Ga.SMP-based anisotropic strength criteria of granular materials. Chinese Journal of Rock Mechanics and Engineering, 2008, 30(8): 1107-1111 (in Chinese))
    [19] 曹威, 王睿, 张建民. 横观各向同性砂土的强度准则. 岩土工程学报, 2016, 38(11): 2026-2032
    [19] (Cao Wei, Wang Rui, Zhang Jianmin.New strength criterion for sand with cross-anisotropy. Chinese Journal of Rock Mechanics and Engineering, 2016, 38(11): 2026-2032 (in Chinese))
    [20] 姚仰平, 孔玉侠. 横观各向同性土强度与破坏准则的研究. 水利学报, 2012, 43(1): 43-50
    [20] (Yao Yangping, Kong Yuxia.Research on the cross-anisotropic soils strength and failure criterion. Journal of Hydraulic Engineering, 2012, 43(1): 43-50 (in Chinese))
    [21] Kong YX, Zhao JD, Yao YP.A failure criterion for cross-anisotropic soils considering microstructure. Acta Geotechnica, 2013, 8(6): 665-673
    [22] 路德春,梁靖宇,王国盛等. 横观各向同性土的三维强度准则. 岩土工程学报, 2018, 40(1): 54-63
    [22] (Lu Dechun, Liang Jingyu, Wang Guosheng, et al.Three-dimensional strength criterion for transverse isotropic geomaterials . Chinese Journal of Geotechnical Engineering, 2018, 40(1): 54-63 (in Chinese))
    [23] 刘洋. 砂土的各向异性强度准则:原生各向异性. 岩土工程学报, 2013, 35(8): 1526-1534
    [23] (Liu Yang.Anisotropic strength criteria of sand: Inherent anisotropy. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1526-1534 (in Chinese))
    [24] 李学丰, 黄茂松, 钱建固. 宏细观结合的砂土各向异性破坏准则. 岩石力学与工程学报, 2010, 29(9): 1885-1892
    [24] (Li Xuefeng, Huang Maosong, Qian Jiangu.Failurecriterion of anisotropic sand with method of macro-meso incorporation. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1885-1892 (in Chinese))
    [25] Gao ZW, Zhao JD.Efficient approach to characterize strength anisotropy in soils. Journal of Engineering Mechanics, 2012, 138(12): 1447-1456
    [26] 黄茂松, 李学丰, 钱建固. 各向异性砂土的应变局部化分析. 岩土工程学报, 2012, 34(10): 1772-1780
    [26] (Huang Maosong, Li Xuefeng, Qian Jiangu.Strain localization of anisotropic sand. Chinese Journal of Rock Mechanics and Engineering, 2012, 34(10): 1772-1780 (in Chinese))
    [27] 王国盛, 路德春, 杜修力等. 基于S准则发展的混凝土动态多轴强度准则. 力学学报, 2016, 48(3): 636-653
    [27] (Wang Guosheng, Lu Dechun, Du Xiuli, et al.Dynamic multiaxial strength criterion for concrete developed based on the s criterion. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 636-653 (in Chinese))
    [28] 高江平, 杨华, 蒋宇飞等. 三剪应力统一强度理论研究. 力学学报, 2017, 49(6): 1322-1334
    [28] (Gao Jiangping, Yang Hua, Jiang Yufei, et al.Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1322-1334 (in Chinese))
    [29] 万征, 秋仁东, 郭金雪. 岩土的一种强度准则及其变换应力法. 力学学报, 2017, 49(3): 726-740
    [29] (Wan Zheng, Qiu Rendong, Guo Jinxue.A kind of strength and yield criterion for geomaterials and its transformation stress method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 726-740 (in
    [30] Chinese))
    [31] 万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型. 力学学报, 2016, 48(5): 1159-1171
    [31] (Wan Zheng, Yao Yangping, Meng Da.An elastoplastic constitutive model of concrete under complicated load. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1159-1171 (in Chinese))
    [32] Matsuoka H, Jun-Ichi H, Kiyoshi H.Deformation and failure of anisotropic and deposits. Soil Mechanics and Foundation Engineering, 1984, 32(11): 31-36 (in Japanese))
    [33] Yao YP, Zhou AN, Lu DC.Extended transformed stress space for geomaterials and its application. Journal of Engineering Mechanics ASCE, 2007, 133(10): 1115-1123
    [34] Yao YP, Yamamoto H, Wang ND.Constitutive model considering sand crushing. Soils and Foundations, 2008, 48(4): 603-608
    [35] Yao YP, Sun DA, Matsuoka H.A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Computers and Geotechnics, 2008, 35(2): 210-222
    [36] Kirkgard MM, Lade PV.1991. Anisotropy of normally consolidated San Francisco Bay Mud. Geotechnical Testing Journal, 14(3): 231-246
    [37] Ochiai H, Lade PV.Three-dimensional behavior of sand with anisotropic fabric. J Geotech Eng, 1983, 109(10): 1313-1328
    [38] Abelev A, Lade PV.Characterization of failure in cross-anisotropic soils. Journal of Engineering Mechanics ASCE, 2004, 130(5): 599-606
    [39] Niandou H, Shao JF, Henry JP, et al.Laboratory investigation of the behaviour of Tournemire shale. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1): 3-16
    [40] Banerjee PK, Yousif NB.A plasticity model for the mechanical behavior of anisotropically consolidated clay. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10: 521-541
    [41] Wan Z.A cyclic UH model for sand. Earthquake Engineering and Engineering Vibration, 2015, 14(2): 229-238
  • 加载中
计量
  • 文章访问数:  721
  • HTML全文浏览量:  72
  • PDF下载量:  370
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回