EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用

兰朋 崔雅琦 於祖庆

兰朋, 崔雅琦, 於祖庆. 完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用[J]. 力学学报, 2018, 50(5): 1156-1167. doi: 10.6052/0459-1879-18-133
引用本文: 兰朋, 崔雅琦, 於祖庆. 完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用[J]. 力学学报, 2018, 50(5): 1156-1167. doi: 10.6052/0459-1879-18-133
Lan Peng, Cui Yaqi, Yu Zuqing. THE COMPLETED FORM OF ELASTIC MODEL FOR ANCF THIN PLATE ELEMENT AND ITS APPLICATION ON DYNAMIC MODELING OF THE LEAF SPRING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1156-1167. doi: 10.6052/0459-1879-18-133
Citation: Lan Peng, Cui Yaqi, Yu Zuqing. THE COMPLETED FORM OF ELASTIC MODEL FOR ANCF THIN PLATE ELEMENT AND ITS APPLICATION ON DYNAMIC MODELING OF THE LEAF SPRING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1156-1167. doi: 10.6052/0459-1879-18-133

完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用

doi: 10.6052/0459-1879-18-133
基金项目: 1) 国家自然科学基金(11802072)中央高校基本科研业务费专项资金(HIT.NSRIF 2018032)资助项目.
详细信息
    作者简介:

    2) 於祖庆, 讲师, 主要研究方向: 多柔体系统建模理论, 计算机辅助设计与分析整合. E-mail: zuqingyu@hit.edu.cn

    通讯作者:

    於祖庆

  • 中图分类号: O313,TH113;

THE COMPLETED FORM OF ELASTIC MODEL FOR ANCF THIN PLATE ELEMENT AND ITS APPLICATION ON DYNAMIC MODELING OF THE LEAF SPRING

  • 摘要: 绝对节点坐标方法已在多体系统动力学研究中广泛应用, 但常用来描述板壳类结构的薄板单元, 由于梯度不完备而无法直接用于带有初始弯曲参考构型的柔性体变形描述. 为避免全参数板单元建立车辆钢板弹簧模型时存在的严重截面闭锁问题, 拟采用薄板单元用于板簧建模. 为此, 探索了将现有绝对节点坐标薄板单元纳入一般连续介质力学弹性力表达的方法, 采用中面上单位法向量作为单元厚度方向的梯度向量, 从而得到了完备化的薄板单元及其描述初始弯曲构型时消除初应变的方法. 在此基础上通过定义簧片的未变形构型, 在钢板弹簧中引入可控的预应力, 实现对钢板弹簧装配过程的准确模拟. 通过数值算例验证了本方法的正确性. 建立了车辆钢板弹簧模型, 通过建立在簧片上的局部坐标系实现接触点的跨单元搜索, 并采用惩罚函数法和平滑化的库伦摩擦模型施加簧片间的接触力. 引入参考节点的概念建立了整合车身与吊耳及其机构运动关系的刚柔耦合模型.}}

     

  • [1] Shabana AA.An absolute nodal coordinates formulation for the large rotation and deformation analysis of flexible bodies. Technical Report. No. MBS96-1-UIC, University of Illinois at Chicago, 1996
    [2] 章孝顺, 章定国, 陈思佳等. 基于绝对节点坐标法的大变形柔性梁几种动力学模型研究. 物理学报, 2016, 65(9): 094501
    [2] (Zhang Xiaoshun, Zhang Dingguo, Chen Sijia, et al.Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Physica Sinica, 2016, 65(9): 094501 (in Chinese))
    [3] Gerstmayr J, Sugiyama H, Mikkola A.Review on the absolute nodal coordinate formulation for large deformation analysis of multi-body systems. Journal of Computational and Nonlinear Dynamics, 2013, 8(3): 031016
    [4] 田强, 张云清, 陈立平等. 柔性多体系统动力学绝对节点坐标方法研究进展. 力学进展, 2010, 40(2): 189-202
    [4] (Tian Qiang, Zhang Yunqing, Chen Liping, et al.Review of the advances in absolute nodal coordinate formulation in flexible multi-body system dynamics. Advances in Mechanics, 2010, 40(2): 189-202 (in Chinese))
    [5] 张越, 赵阳, 谭春林等. ANCF 索梁单元应变耦合问题与模型解耦. 力学学报, 2016, 48(6): 1406-1415
    [5] (Zhang Yue, Zhao Yang, Tan Chunlin, et al.The strain coupling problem and model decoupling of ANCF cable/beam element. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1406-1415 (in Chinese))
    [6] 岳宝增, 于嘉瑞, 吴文军. 多储液腔航天器刚液耦合动力学与复合控制. 力学学报, 2017, 49(2): 390-396
    [6] (Yue Baozeng, Yu Jiarui, Wu Wenjun.Rigid and liquid coupling dynamics and hybrid control of spacecraft with multiple propellant tanks. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(2): 390-396 (in Chinese))
    [7] 胡景晨, 王天舒. 一种$O(n)$ 算法复杂度的递推绝对节点坐标法研究. 力学学报, 2016, 48(5): 1172-1183
    [7] (Hu Jingchen, Wang Tianshu.A recursive absolute nodal coordinate formulation with $O(n)$ algorithm complexity. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1172-1183 (in Chinese))
    [8] 刘铖, 田强, 胡海岩. 基于绝对节点坐标的多柔体系统动力学高效计算方法. 力学学报, 2010, 42(6): 1197-1205
    [8] (Liu Cheng, Tian Qiang, Hu Haiyan.Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1197-1205 (in Chinese))
    [9] García Vallejo D, Mayo J, Escalona JL, et al.Efficient evaluation of the elastic forces and the jacobian in the absolute nodal coordinate formulation. Nonlinear Dynamic, 2004, 35: 313-329
    [10] Shabana AA.ANCF tire assembly model for multibody system applications. Journal of Computational and Nonlinear Dynamics, 2015, 10(2): 024504
    [11] Omar MA, Shabana AA, Mikkola A, et al.Multibody system modeling of leaf springs. Journal of Vibration and Control, 2004, 10(11): 1601-1638
    [12] Yu ZQ, Liu YG, Tinsley B, et al.Integration of geometry and analysis for vehicle system applications: Continuum-based leaf spring and tire assembly. Journal of Computational and Nonlinear Dynamics, 2015 11(3): 031011
    [13] Dufva K, Shabana AA.Analysis of thin plate structures using the absolute nodal coordinate formulation. Proceedings of the Institution of Mechanical Engineers Part K: Journal of Multibody Dynamics, 2005, 219(4): 345-355
    [14] Wang JS, Li ZK, Jiang QB. The analysis of composite leaf spring by finite element method and experimental measurements//FISITA 2012 World Automotive Congress Proceedings-Volume 7: Vehicle Design and Testing, Beijing, China, 2012-11-27, 803
    [15] Zhou ZF, Guo WF, Shen TJ, et al.Research and application on dynamic stiffness of leaf spring. FISITA 2012 World Automotive Congress Proceedings-Volume 10: Chassis Systems and Integration Technology Beijing, China, 2012-11-27, 2012, 111
    [16] Nunney MJ.Light and Heavy Vehicle Technology. Oxford: Society for Neuroscience, 2006: 352
    [17] Dunaevskii B.Calculation of solid beams and flat springs (leaf springs) of varying cross-section. Soviet Engineering Research, 1981, 61(4): 36-38
    [18] 周孔亢, 陆建辉, 侯永涛等. 基于RecurDyn的钢板弹簧动力学模型的建立与参数辨识. 机械工程学报, 2014, 50(4): 128-134
    [18] (Zhou Kongkang, Lu Jianhui, Hou Yongtao, et al.Dynamics modeling and parameter identification of leaf spring based on RecurDyn. Journal of Mechanical Engineering, 2014, 50(4): 128-134 (in Chinese))
    [19] 段亮, 杨树凯, 宋传学等. 平衡悬架钢板弹簧动态特性的研究. 机械工程学报, 2016, 52(6): 153-158
    [19] (Duan Liang, Yang Shukai, Song Chuanxue, et al.Research on dynamic characteristics of the tandem suspension leaf spring. Journal of Mechanical Engineering, 2016, 52(6): 153-158 (in Chinese))
    [20] Wriggers P, Zavarise G.On contact between three-dimensional beams undergoing large deflections. Communications in Numerical Methods in Engineering, 1997, 13(6): 429-438
    [21] Zavarise G, Wriggers P.Contact with friction between beams in 3-D space. International Journal for Numerical Methods in Engineering, 2000, 49: 977-1006
    [22] Litewka P, Wriggers P.Contact between 3D beams with rectangular cross-sections. International Journal for Numerical Methods in Engineering, 2002, 53: 2019-2041
    [23] Litewka P.Hermite polynomial smoothing in beam-tobema frictional contact. Computational Mechanics, 2007, 40: 815-826
    [24] Litewka P.Smooth frictional contact between beams in 3D//Nack-enhorst U, Wriggers P. (eds.) IUTAM Symposium on Computational Contact Mechanics. IUTAM Bookseries. Dordrecht: Springer, 2007, 157-176
    [25] Konyukhov A, Schweizerhof K.Geometrically exact covariant approach for contact between curves. Computer Methods in Applied Mechanics and Engineering, 2010, 199: 2510-2531
    [26] Litewka P.Multiple-point beam-to-beam contact finite element//19th International Conference on Computer Methods in Mechanics, Warsaw, Poland, 9-12, May, 2011
    [27] Durville D.Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Computational Mechanics, 2012, 49(6): 687-707
    [28] Wang QT, Tian Q, Hu HY.Dynamic simulation of frictional contacts of thin beams during large overall motions via absolute nodal coordinate formulation. Nonlinear Dynamics, 2014, 77(4): 1411-1425
    [29] Wang QT, Tian Q, Hu HY.Dynamic simulation of frictional multi-zone contacts of thin beams. Nonlinear Dynamics, 2016, 83(4): 1919-1937
    [30] Zahavi E.Analysis of a contact problem in leaf springs. Mechanics Research Communications, 1992, 19(1): 21-27
    [31] Shabana AA. Computational Continuum Mechanics.London: Cambridge University Press. 2012: 46-93
    [32] Liu C, Tian Q, Hu HY.New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dynamics, 2012, 70(3): 1903-1918
    [33] Gantoi FM, Brown MA, Shabana AA.Finite element modeling of the contact geometry and deformation in biomechanics. Journal of Computational and Nonlinear Dynamics, 2013, 8(4): 041013
    [34] Shabana AA.ANCF reference node for multibody system analysis. Proceedings of the Institution of Mechanical Engineers Part K: Journal of Multibody Dynamics, 2015, 229(1): 109-112
    [35] Shabana AA.Dynamics of Multibody Systems. Cambridge: Cambridge University Press, 2005.
    [36] 田强. 基于绝对节点坐标方法的柔性多体系统动力学研究与应用. [博士论文]. 武汉: 华中科技大学, 2009
    [36] (Tian Qiang, Flexible multibody dynamics research and application based on the absolute nodal coordinate method. [PhD Thesis]. Wuhan: Huazhong University of Science and Technology, 2009 (in Chinese))
    [37] Yu ZQ, Shabana AA.Mixed-coordinate ancf rectangular finite element. Journal of Computational and Nonlinear Dynamics, 2015, 10(6): 061003
    [38] Shabana AA, Zaazaa KE, Sugiyama H.Railroad Vehicle Dynamics: A Computational Approach. Boca Raton: CRC Press. 2007: 145-147
  • 加载中
计量
  • 文章访问数:  812
  • HTML全文浏览量:  69
  • PDF下载量:  223
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-20
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回