EI、Scopus 收录
中文核心期刊

各向同性湍流通过正激波的演化特征研究

洪正, 叶正寅

洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究[J]. 力学学报, 2018, 50(6): 1356-1367. DOI: 10.6052/0459-1879-18-129
引用本文: 洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究[J]. 力学学报, 2018, 50(6): 1356-1367. DOI: 10.6052/0459-1879-18-129
Hong Zheng, Ye Zhengyin. STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367. DOI: 10.6052/0459-1879-18-129
Citation: Hong Zheng, Ye Zhengyin. STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367. DOI: 10.6052/0459-1879-18-129
洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究[J]. 力学学报, 2018, 50(6): 1356-1367. CSTR: 32045.14.0459-1879-18-129
引用本文: 洪正, 叶正寅. 各向同性湍流通过正激波的演化特征研究[J]. 力学学报, 2018, 50(6): 1356-1367. CSTR: 32045.14.0459-1879-18-129
Hong Zheng, Ye Zhengyin. STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367. CSTR: 32045.14.0459-1879-18-129
Citation: Hong Zheng, Ye Zhengyin. STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1356-1367. CSTR: 32045.14.0459-1879-18-129

各向同性湍流通过正激波的演化特征研究

基金项目: 1) 国家自然科学基金资助项目(11732013).
详细信息
    作者简介:

    null

    2) 洪正,硕士研究生,主要研究方向:激波湍流相互干扰. E-mail: hongzheng@mail.nwpu.edu.cn

    通讯作者:

    洪正

  • 中图分类号: O322,V215.3;

STUDY ON EVOLUTION CHARACTERISTICS OF ISOTROPIC TURBULENCE PASSING THROUGH A NORMAL SHOCK WAVE

  • 摘要: 激波与湍流相互作用(shock-turbulence interaction,STI)是空气动力学研究中的一个基础问题.基于格心有限差分法(cell-centered finite difference method,CCFDM)求解器Helios,采用五阶加权紧致非线性格式(weighted compact nonlinear scheme,WCNS)对各向同性湍流通过正激波的情形进行直接数值模拟(direct numerical simulation,DNS).对湍流相关物理量进行统计,分析结果表明,在湍流中波后的密度、温度和压力较无湍流情形下略小,而速度则略大,均在波后呈现短暂过冲然后缓慢向理论值逼近的变化趋势;波后流向雷诺应力突降随之快速增长又衰减,呈现非单调变化趋势,线性相互作用分析(linear interaction analysis,LIA)将其归结为波后能量从声模式转移为涡模式方式,与流向不同,横向雷诺应力突增后单调衰减,波后雷诺应力各向异性明显且随下游距离逐渐增强;波后湍动能突增后呈现非单调变化趋势;泰勒微尺度和Kolmogorov尺度过激波后均明显减小,说明波后湍流长度尺度变小,从而对波后网格的分辨率提出了更高的要求;密度、温度和压力过激波后脉动均方根均增加,密度和压力脉动强度减小,温度脉动强度增大.
    Abstract: Shock-turbulence interaction is a kind of important fundamental problem in aerodynamics. Based on solver Helios which applies cell-centered finite difference method (CCFDM), using fifth-order weighted compact nonlinear scheme (WCNS), we conducted direct numerical simulation (DNS) of the situation where isotropic turbulence passes through a normal shock wave. Turbulence statistics are calculated for analysis. We found after shock, density is a little lower than its non-turbulent value, so do temperature and pressure, on the contrary, longitudinal velocity is a little higher than its non-turbulent value. The commonality is that they all show an overshoot immediately behind the shock, after that they gradually approach towards their non-turbulent values along with downstream distance. Longitudinal Reynolds stress suffers a sudden decrease and increases rapidly followed by decaying. This evolution characteristics is captured in linear interaction analysis (LIA) and a transfer of energy from acoustical to vertical modes behind the shock is thought to be accounted for it according to this analysis. Different from longitudinal Reynolds stress, Transverse Reynolds stress suffers a sudden increase then decay monotonically. Anisotropy of Reynolds stress is apparent after shock, and it gradually increases as downstream distance increases. Turbulent kinetic energy suddenly increases and then evolves non-monotonically. Taylor microscale and Kolmogorov scales apparently decrease after shock, indicating the decrease of turbulent length scales, which leads to a requirement of higher resolution of mesh in this zone to solve the flow field. After shock, the root-mean-squares of density, temperature and pressure fluctuations are enhanced, and intensities of density and pressure decrease while intensity of temperature increases.
  • [1] Leslie SG, Kovasznay. Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 1953, 20: 657-682
    [2] Ribner HS.Convection of a pattern of vorticity through a shock wave. NACA TN 2864, 1953
    [3] Ribner HS.Shock/turbulence interaction and the generation of noise. NACA TN 3288, 1954
    [4] Ribner HS.Spectra of noise and amplified turbulence emanating from shock/turbulence interaction. AIAA Journal, 1987, 35: 436-442
    [5] Lele SK.Shock-jump relations in a turbulent flow. Physics of Fluids A : Fluid Dynamics, 1992, 4: 2900-2905
    [6] Lee S, Lele SK, Moin P.Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. Journal of Fluid Mechanics, 1993, 251: 533-562
    [7] Lee S, Lele SK, Moin P.Interaction of isotropic turbulence with shock waves: effect of shock strength. Journal of Fluid Mechanics, 1997, 340: 225-247
    [8] Mahesh K, Lele SK, Moin P.The influence of entropy fluctuations on the interaction of turbulence with shock wave. Journal of Fluid Mechanics, 1997, 334: 353-379
    [9] Lele SK, Larsson J.Shock-turbulence interaction: what we know and what we can learn from peta-scale simulations. Journal of Physics: Conference Series, 2009, 180: 012032
    [10] Larsson J, Lele SK.Direct numerical simulation of canonical shock/turbulence interaction. Physics of Fluids, 2009, 21: 126101
    [11] Larsson J, Bermejo-Moreno I, Lele SK.Reynolds- and Machnumber effects in canonical shock-turbulence interaction. Journal of Fluid Mechanics, 2013, 717: 293-321
    [12] Ryu J, Livescu D.Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. Journal of Fluid Mechanics, 2014, 756: R1
    [13] Livescu D, Ryu J.Vortitity dynamics after the shock-turbulence interaction. Shock Waves, 2016, 26: 241-251
    [14] Quadros R, Sinha K, Larsson J.Turbulent energy flux generated by shock/homogeneous-turbulence inter-action. Journal of Fluid Mechanics, 2016, 796: 113-157
    [15] Quadros R, Sinha K.Modeling of turbulent energy flux in canonical shock-turbulence interaction. International Journal of Heat and Fluid Flow, 2016, 61: 626-635
    [16] Tian YF, Jaberi FA, Livescu D, et al.Numerical simulation of multi-fluid shock-turbulence interaction. AIP Conference Proceedings, 2017, 1793:150010
    [17] Tian YF, Jaberi FA, Li ZR, et al.Numerical study of variable density turbulence interaction with a normal shock wave. Journal of Fluid Mechanics, 2017, 829: 551-588
    [18] Gao XY, Bermejo-Moreno I, Larsson J.Direct numerical simulation of passive scalar mixing in shock turbulence interaction //70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, Colorado, 2017
    [19] Vemula JB, Sinha K.Reynolds stress models applied to canonical shock-turbulence interaction. Journal of Turbuulence, 2017, 18: 653-687
    [20] Boukharfane R, Bouali Z, Mura A.Evolution of scalar and velocity dynamics in planar shock-turbulence interaction. Shock Waves, 2018, 5: 1-25
    [21] 王国蕾, 陆夕云. 激波和湍流相互作用的数值模拟.力学进展, 2012, 42(3): 274-281
    [21] (Wang Guolei, Lu Xiyun.Numerical simulation of shock wave/turbulence interactions. Advances in Mechanics, 2012, 42(3): 274-281(in Chinese))
    [22] 崔光耀, 潘翀, 高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017, 49(6): 1201-1212
    [22] (Cui Guanyao, Pan Chong, Gao Qi, et al.Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212(in Chinese))
    [23] 童福林, 李欣, 于长平等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018, 50(2): 197-208
    [23] (Tong Fulin, Li Xin, Yu Changping, et al.Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208(in Chinese))
    [24] 高天达, 孙姣, 范赢等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, DOI: 10.6052/0459-1879-18-211
    [24] (PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, DOI: 10.6052/0459-1879-18-211
    [25] Liao F, Ye ZY, Zhang LX.Extending geometric conservation law to cell-centered finite difference methods on stationary grids. Journal of Computational Physics, 2015, 284: 419-433
    [26] Liao F, Ye ZY.Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids. Journal of Computational Physics, 2015, 303: 212-221
    [27] Deng XG, Zhang HX.Developing high-order weigh-ted compact nonlinear schemes. Journal of Computational Physics, 2000, 165: 22-44
    [28] 刘昕, 邓小刚, 毛枚良等. 高阶精度非线性格式WCNS-E-5在二维流动中的应用研究.空气动力学报, 2004, 22(2): 206-210
    [28] (Liu Xin, Deng Xiaogang, Mao Meiliang, et al.Weighted compact high-order nonlinear scheme WCNS-E-5 applied to two dimensional flows. Chinese Journal of Theoretical Applied Mechanics, 2004, 22(2): 206-210(in Chinese))
    [29] Mahesh K, Moin P, Lele SK.The interaction of a shock wave with a turbulent shear flow. AFSOR TF- 69, 1996
    [30] Rogallo RS.Numerical experiments in homogeneous turbulence. NASA, Technical Report 81315, 1981
    [31] 秦泽聪, 方乐. 一种改进的均匀各向同性湍流初始化方法. 力学学报, 2016, 48(6): 1319-1325
    [31] (Qin Zecong, Fang Le.An improved method for initializing homogeneous isotropic turbulent flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325(in Chinese))
    [32] Samtaney R, Pullin DI, Kosovic B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Physics of Fluids, 2001, 13: 1415-1430
    [33] Pope SB. Turbulent Flows.Cambridge: Cambridge University Press, 2000
  • 期刊类型引用(6)

    1. 胡迎港,蒋艳群,黄晓倩. 非稳态Hamilton-Jacobi方程的7阶加权紧致非线性格式. 力学学报. 2022(11): 3203-3214 . 本站查看
    2. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
    3. 洪正,叶正寅. 各向异性柔性壁上二维T-S波演化的数值研究. 力学学报. 2021(05): 1302-1312 . 本站查看
    4. 强光林,杨易,陈阵,谷正气,张勇. 基于车身绕流的低雷诺数湍流模型改进研究. 力学学报. 2020(05): 1371-1382 . 本站查看
    5. 洪正,叶正寅. 不同亚格子模型在亚声速槽道流大涡模拟中的应用对比. 气体物理. 2019(01): 33-44 . 百度学术
    6. 骆信,吴颂平. 改进的五阶WENO-Z+格式. 力学学报. 2019(06): 1927-1939 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2018-04-17
  • 刊出日期:  2018-11-17

目录

    /

    返回文章
    返回