[1] | Leslie SG, Kovasznay. Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 1953, 20: 657-682 | [2] | Ribner HS.Convection of a pattern of vorticity through a shock wave. NACA TN 2864, 1953 | [3] | Ribner HS.Shock/turbulence interaction and the generation of noise. NACA TN 3288, 1954 | [4] | Ribner HS.Spectra of noise and amplified turbulence emanating from shock/turbulence interaction. AIAA Journal, 1987, 35: 436-442 | [5] | Lele SK.Shock-jump relations in a turbulent flow. Physics of Fluids A : Fluid Dynamics, 1992, 4: 2900-2905 | [6] | Lee S, Lele SK, Moin P.Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. Journal of Fluid Mechanics, 1993, 251: 533-562 | [7] | Lee S, Lele SK, Moin P.Interaction of isotropic turbulence with shock waves: effect of shock strength. Journal of Fluid Mechanics, 1997, 340: 225-247 | [8] | Mahesh K, Lele SK, Moin P.The influence of entropy fluctuations on the interaction of turbulence with shock wave. Journal of Fluid Mechanics, 1997, 334: 353-379 | [9] | Lele SK, Larsson J.Shock-turbulence interaction: what we know and what we can learn from peta-scale simulations. Journal of Physics: Conference Series, 2009, 180: 012032 | [10] | Larsson J, Lele SK.Direct numerical simulation of canonical shock/turbulence interaction. Physics of Fluids, 2009, 21: 126101 | [11] | Larsson J, Bermejo-Moreno I, Lele SK.Reynolds- and Machnumber effects in canonical shock-turbulence interaction. Journal of Fluid Mechanics, 2013, 717: 293-321 | [12] | Ryu J, Livescu D.Turbulence structure behind the shock in canonical shock-vortical turbulence interaction. Journal of Fluid Mechanics, 2014, 756: R1 | [13] | Livescu D, Ryu J.Vortitity dynamics after the shock-turbulence interaction. Shock Waves, 2016, 26: 241-251 | [14] | Quadros R, Sinha K, Larsson J.Turbulent energy flux generated by shock/homogeneous-turbulence inter-action. Journal of Fluid Mechanics, 2016, 796: 113-157 | [15] | Quadros R, Sinha K.Modeling of turbulent energy flux in canonical shock-turbulence interaction. International Journal of Heat and Fluid Flow, 2016, 61: 626-635 | [16] | Tian YF, Jaberi FA, Livescu D, et al.Numerical simulation of multi-fluid shock-turbulence interaction. AIP Conference Proceedings, 2017, 1793:150010 | [17] | Tian YF, Jaberi FA, Li ZR, et al.Numerical study of variable density turbulence interaction with a normal shock wave. Journal of Fluid Mechanics, 2017, 829: 551-588 | [18] | Gao XY, Bermejo-Moreno I, Larsson J.Direct numerical simulation of passive scalar mixing in shock turbulence interaction //70th Annual Meeting of the APS Division of Fluid Dynamics, Denver, Colorado, 2017 | [19] | Vemula JB, Sinha K.Reynolds stress models applied to canonical shock-turbulence interaction. Journal of Turbuulence, 2017, 18: 653-687 | [20] | Boukharfane R, Bouali Z, Mura A.Evolution of scalar and velocity dynamics in planar shock-turbulence interaction. Shock Waves, 2018, 5: 1-25 | [21] | 王国蕾, 陆夕云. 激波和湍流相互作用的数值模拟.力学进展, 2012, 42(3): 274-281 | [21] | (Wang Guolei, Lu Xiyun.Numerical simulation of shock wave/turbulence interactions. Advances in Mechanics, 2012, 42(3): 274-281(in Chinese)) | [22] | 崔光耀, 潘翀, 高琪等. 沟槽方向对湍流边界层流动结构影响的实验研究. 力学学报, 2017, 49(6): 1201-1212 | [22] | (Cui Guanyao, Pan Chong, Gao Qi, et al.Flow structure in the turbulent boundary layer over directional riblets surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1201-1212(in Chinese)) | [23] | 童福林, 李欣, 于长平等. 高超声速激波湍流边界层干扰直接数值模拟研究. 力学学报, 2018, 50(2): 197-208 | [23] | (Tong Fulin, Li Xin, Yu Changping, et al.Direct numerical simulation of hypersonic shock wave and turbulent boundary layer interactions. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208(in Chinese)) | [24] | 高天达, 孙姣, 范赢等. 基于PIV技术分析颗粒在湍流边界层中的行为. 力学学报, DOI: 10.6052/0459-1879-18-211 | [24] | (PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, DOI: 10.6052/0459-1879-18-211 | [25] | Liao F, Ye ZY, Zhang LX.Extending geometric conservation law to cell-centered finite difference methods on stationary grids. Journal of Computational Physics, 2015, 284: 419-433 | [26] | Liao F, Ye ZY.Extending geometric conservation law to cell-centered finite difference methods on moving and deforming grids. Journal of Computational Physics, 2015, 303: 212-221 | [27] | Deng XG, Zhang HX.Developing high-order weigh-ted compact nonlinear schemes. Journal of Computational Physics, 2000, 165: 22-44 | [28] | 刘昕, 邓小刚, 毛枚良等. 高阶精度非线性格式WCNS-E-5在二维流动中的应用研究.空气动力学报, 2004, 22(2): 206-210 | [28] | (Liu Xin, Deng Xiaogang, Mao Meiliang, et al.Weighted compact high-order nonlinear scheme WCNS-E-5 applied to two dimensional flows. Chinese Journal of Theoretical Applied Mechanics, 2004, 22(2): 206-210(in Chinese)) | [29] | Mahesh K, Moin P, Lele SK.The interaction of a shock wave with a turbulent shear flow. AFSOR TF- 69, 1996 | [30] | Rogallo RS.Numerical experiments in homogeneous turbulence. NASA, Technical Report 81315, 1981 | [31] | 秦泽聪, 方乐. 一种改进的均匀各向同性湍流初始化方法. 力学学报, 2016, 48(6): 1319-1325 | [31] | (Qin Zecong, Fang Le.An improved method for initializing homogeneous isotropic turbulent flows. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1319-1325(in Chinese)) | [32] | Samtaney R, Pullin DI, Kosovic B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Physics of Fluids, 2001, 13: 1415-1430 | [33] | Pope SB. Turbulent Flows.Cambridge: Cambridge University Press, 2000 |
|