EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲激光与正激波相互作用过程和减阻机理的实验研究

王殿恺 文明 王伟东 卿泽旭

王殿恺, 文明, 王伟东, 卿泽旭. 脉冲激光与正激波相互作用过程和减阻机理的实验研究[J]. 力学学报, 2018, 50(6): 1337-1345. doi: 10.6052/0459-1879-18-104
引用本文: 王殿恺, 文明, 王伟东, 卿泽旭. 脉冲激光与正激波相互作用过程和减阻机理的实验研究[J]. 力学学报, 2018, 50(6): 1337-1345. doi: 10.6052/0459-1879-18-104
Wang Diankai, Wen Ming, Wang Weidong, Qing Zexu. EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1337-1345. doi: 10.6052/0459-1879-18-104
Citation: Wang Diankai, Wen Ming, Wang Weidong, Qing Zexu. EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(6): 1337-1345. doi: 10.6052/0459-1879-18-104

脉冲激光与正激波相互作用过程和减阻机理的实验研究

doi: 10.6052/0459-1879-18-104
基金项目: 1) 国家自然科学基金资助项目(11372356).
详细信息
    作者简介:

    null

    2) 王殿恺,副研究员,主要研究方向:流动控制与优化、光学测量技术. E-mail: diankai@mail.ustc.edu.cn

    通讯作者:

    王殿恺

  • 中图分类号: V211.1;

EXPERIMENTAL STUDY ON PROCESS AND MECHANISMS OF WAVE DRAG REDUCTION DURING PULSED LASER INTERACTING WITH NORMAL SHOCK

  • 摘要: 纳秒脉冲激光具有峰值功率密度高、易于击穿空气形成等离子体这一突出优势,在降低超声速波阻方面具有重要应用价值.以深刻揭示减阻机理为目的,针对激光与正激波相互作用这一基本物理现象开展实验研究.发展高精度纹影技术以测量复杂激波结构,时间分辨率达到 30ns,空间分辨率达到 1mm;搭建快速~PIV 实验系统以定量测量流场速度和涡量,时间分辨率达到 500ns.探明了激光等离子体引致的球面激波和高温低密度区域特性,揭示了激光等离子体在正激波冲击下的流动特性与演化规律,并结合数值模拟结果阐明了脉冲激光等离子体降低超声速波阻的根本原因.研究表明:激光等离子体引致激波的初始马赫数随着激光能量而增大,形状由水滴形逐渐发展为球面形,传播速度随着时间降低,在50$\mu$s 后接近于声速;高温低密度区域初始近似于球形,而后从激光入射方向的下游开始失稳,形成尖刺结构;在正激波冲击下,高温低密度区域演化为上下对称的双涡环结构,尺寸随着激光能量而增大.涡的卷吸和逆流可改变飞行器头部激波结构,是流场重构的重要形式,引起飞行器表面压力的大幅降低,是引起超声速飞行器波阻降低的重要机理.

     

  • [1] Myrabo LN. Solar-powered global air transportation. AIAA Paper 19780689, 1978
    [2] 朱亮, 陈雄, 周长省等. 侧向喷流对超声速流动中支杆减阻降热特性影响的研究. 推进技术, 2018, 39(2): 326-334
    [2] (Zhu Liang, Chen Xiong, Zhou Changsheng, et al.Research on effects of lateral jet on drag and heat reduction characteristics of spike in supersonic flows. Journal of Propulsion Technology, 2018, 39(2): 326-334(in Chinese))
    [3] Gilinsky M, Blankson IM, Sakhrov VI, et al. Shock waves mitigation at blunt bodies using needles and shells against a supersonic flow. AIAA Paper 2001-3204, 2001
    [4] 姜维, 杨云军, 陈河梧. 带减阻杆高超声速飞行器外形气动特性研究. 实验流体力学, 2011, 25(6): 28-32
    [4] (Jiang Wei, Yang Yunjun, Chen Hewu.Investigations on aerodynamics of the spike-tipped hypersonic vehicles. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32(in Chinese))
    [5] 韩桂来. 高超声速飞行器无烧蚀自适应减阻防热新概念研究. [博士论文]. 北京: 中国科学院研究生院. 2010
    [5] (Han Guilai.Study on the new concept of hypersonic aircraft adaptive drag and heat reduction without ablation. [PhD Thesis]. Beijing: Graduate University of Chinese Academy of Sciences 2010(in Chinese))
    [6] 张江, 吴军飞, 尼文斌等. 带喷流激波针流动特性实验研究. 力学学报, 2016, 48(5): 1040-1048
    [6] (Zhang Jiang, Wu Junfei, Ni Wenbin, et al.Experimental investigation on flow field around blunt body with forward-facing jet and spike. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1040-1048(in Chinese))
    [7] Tret'yakov PK, Grachev GP, Ivanchenko AI, et al. Stabilization of the optical discharge in a supersonic argon flow. Physics-Doklady, 1994, 39(6): 415-416
    [8] Tret'yakov PK, Garanin AF, Grachev GN, et al. Control of supersonic flow around bodies by means of high-power recurrent optical breakdowns. Physics-Doklady, 1996, 41(11): 566-567
    [9] Adelgren R, Elliott G, Knight D, et al. T. Energy deposition in supersonic flows. AIAA Paper 2001-0885, 2001
    [10] Adelgren R, Yan H, Elliott G. Localized flow control by laser energy deposition applied to edney IV shock impingement and intersecting shocks. AIAA Paper 2033-0031, 2003
    [11] Minucci MAS, Chanes JB, Myrabo LN, et al.Investigation of a laser-supported directed-energy "air spike" in hypersonic flow. Journal of Spacecraft and Rockets, 2003, 40(1): 133-136
    [12] Oliveira AC, Minucci MAS, Toro P G P, et al. Schlieren visualization technique applied to the study of laser-induced breakdown in low density hypersonic flow. Beamed Energy Propulsion, 2006, 830(1): 504-509
    [13] Oliveira AC, Minucci MA, Myrabo LN, et al.Bow shock wave mitigation by laser-plasma energy addition in hypersonic flow. Journal of Spacecraft and Rockets, 2008, 45(5): 921-927
    [14] Bracken RM, Myrabo LN, Nagamatsu HT, et al. Experimental/computational investigation of eclectric arc air-spikes in hypersonic flow with drag measurements. AIAA Paper 2001-3797, 2001
    [15] Riggins D, Nelson HF, Johnson E.Blunt-body wave drag reduction using focused energy deposition. AIAA Journal, 1999, 37(4): 460-467
    [16] Taguchi S, Ohnishi N, Furudate M, et al. Numerical analysis of drag reduction for supersonic blunt body by pulse energy deposition. AIAA Paper 2007-1235, 2007
    [17] Ogino Y, Ohnishi N, Taguchi S, et al.Baroclinic vortex influence on wave drag reduction induced by pulse energy deposition. Physics of Fluids, 2009, 21(6): 0661021
    [18] Yu X, Yan H.Parametric study of laser energy deposition in Mach 8 bow shock. International Journal of Flow Control, 2012, 4(1): 19-28
    [19] Yu XJ, Yan H. Effect of single- and repetitive-pulsed thermal actuator in a Mach 8 bow shock. AIAA Paper 2013-0459, 2013
    [20] Fang J, Hong Y, Li Q.Numerical analysis of interaction between single pulse laser-induced plasma and bow shock in a supersonic flow. Plasma Science and Technology, 2012, 14(8): 741-746
    [21] 王殿恺. 激光能量控制高超声速波系结构特性研究. [博士论文]. 北京: 装备学院, 2013
    [21] (Wang Diankai.Control of hypersonic shock wave structures with laser energy deposition. [PhD Thesis]. Beijing: Equipment Academy, 2013 (in Chinese))
    [22] 王殿恺, 洪延姬, 李倩等. 激光能量沉积降低钝头体驻点压力机制分析. 推进技术, 2014, 35(2):172-177
    [22] (Wang Diankai, Hong yanji, Li Qian, et al. Investigation of stagnation pressure reduction of blunt body by laser energy deposition. Journal of Propulsion Technology, 2014, 35(2):172-177 (in Chinese))
    [23] 王殿恺,王伟东,卿泽旭等. 脉冲激光能量降低高超声速波阻机理研究. 推进技术, 2017, 35(7): 1675-1680
    [23] (Wang Diankai, Wang Weidong, Qing Zexu, et al.Study on mechanism of hypersonic wave drag reduction by pulsed laser energy deposition. Journal of Propulsion Technology, 2017, 35(7): 1675-1680(in Chinese))
    [24] Sasoh A, Sekiya Y, Sakai T, et al. Supersonic drag reduction with repetitive laser pulses through a blunt body. AIAA Paper 2009-3585, 2009
    [25] Azarova OA.Supersonic flow control using combined energy deposition. Aerospace, 2015, 2(1): 118-134
    [26] Niederhaus J, Greenough A, Oakley G, et al.Computational parameter study for the three-dimensional shock-bubble interaction. Journal of Fluid Mechanics, 2008, 594(594): 85-124
    [27] 苏健, 田海平, 姜楠. 逆向涡对超疏水壁面减阻影响的 TRPIV 实验研究. 力学学报, 2016, 48(5): 1033-1039
    [27] (Su Jian, Tian Haiping, Jiang Nan.TRPIV experimental investigation of the effect of retrograde vortex on drag-reduction mechanism over superhydrophobic surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1033-1039(in Chinese))
    [28] 高文智, 李祝飞, 曾亿山等. 前体涡发生器对轴对称高超声速进气道激波振荡流动的影响实验. 力学学报, 2018, 50(2): 209-220
    [28] (Gao Wenzhi, Li Zhufei, Zeng Yishan, et al.Experimental investigations of effects of forebody vortex generators on the oscillatory flow of an axisymmetric hypersonic inlet. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 209-220(in Chinese))
    [29] 毛枚良, 董维中, 邓小刚等. 强激光与高超声速球锥流场干扰数值模拟研究. 空气动力学学报, 2001, 19(2): 172-176
    [29] (Mao Meiliang, Deng Weizhong, Deng Xiaogang, et al.Numerical simulating study of the interaction between a high-powered laser and the hypersonic flow field about a sphere cone. Acta Aerodynamica Sinica, 2001, 19(2): 172-176(in Chinese))
    [30] 陈豪, 石磊, 马丽华等. 纳秒激光等离子体减阻数值模拟. 激光与红外, 2014, 44(2): 131-135
    [30] (Chen Hao, Shi Lei, Ma Lihua, et al.Numerical simulation of nanosecond laser plasma drag reduction. Laser & Infrared, 2014, 44(2): 131-135(in Chinese))
    [31] 付宁, 徐德刚, 张贵忠等. 飞秒激光等离子体在高超声速飞行器减阻中的应用. 中国激光, 2015, 42(2): 0202003
    [31] (Fu Ning, Xu Degang, Zhang Guizhong, et al.Exploring femtosecond laser plasma to reduce drag of hypersonic vehicle. Chinese Journal of Lasers, 2015, 42(2): 0202003(in Chinese))
    [32] 王殿恺, 洪延姬, 李倩等. 高超声速波系结构的彩色纹影显示技术. 红外与激光工程, 2014, 43(6): 1710-1714
    [32] (Wang Diankai, Hong Yanji, Li Qian, et al.Color schlieren for hypersonic shock wave structures diagnosis. Laser & Infrared, 2014, 43(6): 1710-1714(in Chinese))
    [33] 卿泽旭, 洪延姬, 王殿恺等. 静止空气中单脉冲激光能量非对称沉积实验与数值模拟. 推进技术, 2017, 38(7): 1661-1668
    [33] (Qing Zexu, Hong Yanji, Wang Diankai, et al.Experimental and numerical study of nanosecond pulsed laser energy asymetric deposition in quiescent air. Journal of Propulsion Technology, 2017, 38(7): 1661-1668(in Chinese))
  • 加载中
计量
  • 文章访问数:  1302
  • HTML全文浏览量:  189
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 刊出日期:  2018-11-18

目录

    /

    返回文章
    返回