EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

JP-10裂解的激波管实验与动力学模拟

熊壮 王苏 张灿 俞鸿儒

熊壮, 王苏, 张灿, 俞鸿儒. JP-10裂解的激波管实验与动力学模拟[J]. 力学学报, 2019, 51(1): 85-93. doi: 10.6052/0459-1879-18-102
引用本文: 熊壮, 王苏, 张灿, 俞鸿儒. JP-10裂解的激波管实验与动力学模拟[J]. 力学学报, 2019, 51(1): 85-93. doi: 10.6052/0459-1879-18-102
Xiong Zhuang, Wang Su, Zhang Can, Yu Hongru. SHOCK-TUBE EXPERIMENTAL STUDY AND KINETIC MODELING OF JP-10 PYROLYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 85-93. doi: 10.6052/0459-1879-18-102
Citation: Xiong Zhuang, Wang Su, Zhang Can, Yu Hongru. SHOCK-TUBE EXPERIMENTAL STUDY AND KINETIC MODELING OF JP-10 PYROLYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 85-93. doi: 10.6052/0459-1879-18-102

JP-10裂解的激波管实验与动力学模拟

doi: 10.6052/0459-1879-18-102
基金项目: 1)国家自然科学基金资助项目(90916017).
详细信息
    作者简介:

    作者简介: 2)王苏,研究员,主要研究方向:燃料点火及燃烧特性.E-mail:suwang@imech.ac.cn

    通讯作者:

    熊壮

    熊壮,王苏,张灿,俞鸿儒

    张灿

    俞鸿儒

  • 中图分类号: O643.5,O354.5;

SHOCK-TUBE EXPERIMENTAL STUDY AND KINETIC MODELING OF JP-10 PYROLYSIS

  • 摘要: 利用单脉冲激波管对碳氢燃料JP-10在1150~1300K条件下的高温热裂解特性进行了实验研究,采用气相色谱法分析热裂解产物并获得了热裂解速率系数.主要裂解产物有乙烯、乙炔、丙烯、丁烯、1,3-丁二烯、环戊二烯、环戊烯、苯、甲苯,以及少量的甲烷、乙烷、二甲苯和甲基环戊烯.将每次激波管实验后所有产物浓度累加, JP-10裂解速率系数由实验测定.为了消除激波运行中非理想性和边界层效应导致反应温度确定的误差,采用对比速率法确定裂解温度,即在反应物中加入少量热解速率已知的内标物,根据内标物在相同的激波管实验条件下的裂解程度确定反应温度.根据内标物裂解量确定的激波管裂解反应温度通常小于采用传统测量激波速度由激波关系计算的反射激波后5区温度.在1200~1300K之间两种方法得到的温度吻合得较好,差异在20K以内,随着温度升高,两者差异增大.在实验研究的基础上,依据San Diego Mechanism对JP-10高温裂解过程进行了动力学模拟.结果显示:主要裂解产物中乙烯、乙炔和1,3-丁二烯产量随温度变化的实验值与San Diego Mechanism的模拟结果有很好的一致性,但环戊烯产量的实验值比模拟值高很多,预示JP-10裂解中完全开环和部分开环反应都是重要的裂解通道.

     

  • [1] Edwards T.Liquid fuels and propellants for aerospace propulsion: 1903-2003. Journal of Propulsion and Power, 2003, 19(6): 1089-1107
    [2] Wickham DT, Engel JR, Rooney S, et al.Additives to improve fuel heat sink capacity in air/fuel heat exchangers. Journal of Propulsion and Power, 2008, 24(1): 55-63
    [3] Gascoin N, Gillard P, Bernard S, et al. Numerical and experimental validation of transient modelling for Scramjet active cooling with supercritical endothermic fuel 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), 2006: 4028
    [4] Zhong Z, Wang Z, Sun M.Effects of fuel cracking on combustion characteristics of a supersonic model combustor. Acta Astronautica, 2015, 110: 1-8
    [5] Zhang C, Qin J, Yang Q, et al.Design and heat transfer characteristics analysis of combined active and passive thermal protection system for hydrogen fueled scramjet. International Journal of Hydrogen Energy, 2015, 40(1): 675-682
    [6] Taddeo L, Gascoin N, Chetehouna K, et al.Experimental study of pyrolysis--combustion coupling in a regeneratively cooled combustor: System dynamics analysis. Aerospace Science and Technology, 2017, 67: 473-483
    [7] 符全军, 燕珂, 杜宗罡等. 吸热型碳氢燃料研究进展. 火箭推进, 2006, 31(5): 32-36
    [7] (Fu Quanjun, Yan Ke, Du Zonggang, et al.Research progress of endothermic hydrocarbon fuels. Journal of Rocket Propulsion. 2005, 31(5): 32-36(in Chinese))
    [8] Bruno TJ, Huber ML, Laesecke A, et al.Thermochemical and thermophysical properties of JP-10. Technical Report NISTIR, 2006, 6640: 325
    [9] Burdette GW, Lander HR, Mccoy JR.High-energy fuels for cruise missiles. Journal of Energy,2012,2(5): 289-292
    [10] Brophy C, Netzer D, Sinibaldi J, et al.Operation of a JP10/air pulse detonation engine//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3591
    [11] Akbar R, Thibault P, Harris P, et al.Detonation properties of unsensitized and sensitized JP-10 and Jet-A fuels in air for pulse detonation engines//36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2000: 3592
    [12] Cooper M, Shepherd J.Experiments studying thermal cracking, catalytic cracking, and pre-mixed partial oxidation of JP-10//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003: 4687
    [13] Herbinet O, Sirjean B, Bounaceur R, et al.Primary mechanism of the thermal decomposition of tricyclodecane. The Journal of Physical Chemistry A, 2006, 110(39): 11298-11314
    [14] Nakra S, Green RJ, Anderson SL.Thermal decomposition of JP-10 studied by micro-flowtube pyrolysis-mass spectrometry. Combustion and Flame, 2006, 144(4): 662-674
    [15] Rao PN, Kunzru D.Thermal cracking of JP-10: Kinetics and product distribution. Journal of Analytical and Applied Pyrolysis, 2006, 76(1): 154-160
    [16] 苏小辉, 侯红梅, 厉刚等. 挂式--四氢双环戊二烯热裂解产物分布研究. 化学学报, 2009, 67(7): 587-592
    [16] (Su Xiaohui, Hou Hongmei, Li Gang, et al.Product distribution of thermal cracking of exo-tetrahydrodicyclopentadiene. Acta Chimica Sinca, 2009, 67(7): 587-592 (in Chinese))
    [17] Chenoweth K, van Duin ACT, Dasgupta S, et al. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. The Journal of Physical Chemistry A, 2009, 113(9): 1740-1746
    [18] 谢文杰, 方文军, 邢燕等. ZSM-5 分子筛催化 JP-10 裂解的研究. 化学学报, 2009, 67(1): 6-12
    [18] (Xie Wenjie, Fang Wenjun, Xing Yan, et al.Catalytic cracking of JP-10 on Zeolite ZSM-5. Acta Chimica Sinica, 2009, 67(1): 6-12(in Chinese))
    [19] Hudzik JM, Asatryan R, Bozzelli JW.Thermochemical properties of exo-tricyclo [5.2. 1.02, 6] decane (JP-10 jet fuel) and derived tricyclodecyl radicals. The Journal of Physical Chemistry A, 2010, 114(35): 9545-9553
    [20] Davidson DF, Horning DC, Oehlschlaeger MA, et al. The decomposition products of JP-10. AIAA Paper, 2001-3707, 2001
    [21] Gaydon AG, Hurle IR.The shock tube in high-temperature chemical physics. Chapman and Hall, 1963: 1-7
    [22] Tsang W, Lifshitz A.Shock tube techniques in chemical kinetics. Annual Review of Physical Chemistry, 1990, 41(1): 559-599
    [23] Tsang W.Comparative rate measurements with a single-pulse shock tube. The Journal of Chemical Physics, 1964, 40(4): 1171-1172
    [24] 范秉诚, 崔季平. 魔洞型单脉冲激波管. 气动实验与测量控制, 1990, 4(3): 58-62
    [24] (Fan Bingcheng, Cui Jiping.Single-pulse shock tube with a magic hole. Aerodynamic Experiment and Measurement & Control, 1990, 4(3): 58-62(in Chinese))
    [25] 崔季平,范秉诚,何宇中.单脉冲激波管在化学动力学研究上的应. 化学物理学报, 1992(5): 374-377
    [25] (Cui Jiping, Fan Bingcheng, He Yuzhong, The application of single pulse shock tube in chemical kinetics studies. Chinese Journal of Chemical Physics, 1992(5):374-377(in Chiinese))
    [26] 勾华杰, 王苏, 范秉诚等. 激波管中测量 JP-10 点火延时的吸附问题研究. 实验流体力学, 2006, 20(4): 69-72
    [26] (Gou Huajie, Wang Su, Fan Bingcheng, et al.Experimental studies of the adsorption in shock tube measurements of the JP-10 ignition delay time. Journal of Experiments in Fluid Mechanics, 2006,20(4): 69-72(in Chinese))
    [27] Tsang W.Comparative rate single-pulse shock tube studies on the thermal decomposition of cyclohexene, 2, 2, 3-trimethylbutane, isopropyl bromide, and ethylcyclobutane. International Journal of Chemical Kinetics, 1970, 2(4): 311-323
    [28] Tsang W, Lifshitz A.Kinetic stability of 1,1,1-Trifluoroethane. International Journal of Chemical Kinetics, 1998, 30(9): 621-628
    [29] Tang W, Brezinsky K.Chemical kinetic simulations behind reflected shock waves. International Journal of Chemical Kinetics, 2006, 38(2): 75-97
    [30] Li SC, Varatharajan B, Williams FA.Chemistry of JP-10 ignition. AIAA Journal, 2001, 39(12): 2351-2356
  • 加载中
计量
  • 文章访问数:  2262
  • HTML全文浏览量:  229
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 刊出日期:  2019-01-18

目录

    /

    返回文章
    返回