EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合网格多维梯度重构的热流预测方法研究

万云博 马戎 王年华 张来平 桂业伟

万云博, 马戎, 王年华, 张来平, 桂业伟. 基于混合网格多维梯度重构的热流预测方法研究[J]. 力学学报, 2018, 50(5): 1003-1012. doi: 10.6052/0459-1879-18-082
引用本文: 万云博, 马戎, 王年华, 张来平, 桂业伟. 基于混合网格多维梯度重构的热流预测方法研究[J]. 力学学报, 2018, 50(5): 1003-1012. doi: 10.6052/0459-1879-18-082
Wan Yunbo, Ma Rong, Wang Nianhua, Zhang Laiping, Gui Yewei. ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012. doi: 10.6052/0459-1879-18-082
Citation: Wan Yunbo, Ma Rong, Wang Nianhua, Zhang Laiping, Gui Yewei. ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1)[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012. doi: 10.6052/0459-1879-18-082

基于混合网格多维梯度重构的热流预测方法研究

doi: 10.6052/0459-1879-18-082
基金项目: 1) 国家重点研发计划(2016YB0200701)和国家自然科学基金(11532016, 91530325)资助项目.
详细信息
    作者简介:

    2) 万云博, 研究实习员, 主要研究方向: 高超声速气动热环境预测. E-mail: wanyb11@163.com

    通讯作者:

    万云博

  • 中图分类号: V211.3;

ACCURATE AERO-HEATING PREDICTIONS BASED ON MUL-TI-DIMENSIONAL GRADIENT RECONSTRUCTION ON HYBRID UNSTRUCTURED GRIDS1)

  • 摘要: 高超声速气动热环境的数值计算对算法和网格的敏感度极高. 随着高超声速飞行器外形日益复杂, 生成高质量的结构网格时间成本呈指数增加, 难以满足工程应用的需求. 非结构/混合网格因具有很强的复杂外形适应能力, 为了缩短任务周期, 有必要在非结构/混合网格上开展高精度的气动热环境数值计算方法研究. 梯度重构方法是影响非结构/混合网格热流计算精度的重要因素之一. 本文通过引入多维梯度重构方法, 发展了基于常规的非结构/混合网格的高精度热流计算方法, 对典型的高超声速Benchmark算例(二维圆柱)进行了模拟, 并与气动力计算广泛采用的Green-Gauss类方法和最小二乘类方法进行了对比. 计算结果表明, 多维梯度重构方法能有效提高非结构/混合网格热流预测精度, 其鲁棒性和收敛性更好. 最后将多维梯度重构方法应用于常规混合网格的三维圆柱和三维双椭球绕流问题, 得到了与实验值吻合较好的热流计算结果, 展现了良好的应用前景.

     

  • [1] Slotnick J, Khodadoust A, Alonso J, et al. CFD vision study: A path to revolutionary computational aerosci-ences. NASA/CR-2014-218178, 2014
    [2] Baker TJ.Mesh generation: Art or science? Progress in Aerospace Science , 2005, 41: 29-63
    [3] Gnoffo PA White JA. Computational aerothermodynamics simulation issues on unstructured grids. AIAA Paper 2004-2371, 2004
    [4] Nompelis I, Drayna TW, Candler GV. Development of a hybrid unstructured implicit solver for the simulation of reacting flows over complex geometries. AIAA Paper 2004-2227, 2004
    [5] Candler GV, Barnhardt MD, Drayna TW, et al. Unstructured grid approaches for accurate aeroheating simulations. AIAA Paper 2007-3959, 2007
    [6] Mazaheri AR, Kleb B. Exploring hypersonic, unstructured grid issues through structured grids. AIAA Paper 2007-4462, 2007
    [7] McCloud PL. Best practices for unstructured grid shock fitting. AIAA Paper 2017-1149, 2017
    [8] Gnoffo PA. Simulation of stagnation region heating in hypersonic flow on tetrahedral grids. AIAA Paper 2007-3960, 2007
    [9] Gnoffo PA. Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tet-rahedral grids. AIAA Paper 2009-0599, 2009
    [10] Gnoffo PA. Updates to multi-dimensional flux reconstruction for hypersonic simulations on tetrahedral. AIAA Paper 2010-1271, 2010
    [11] Gnoffo PA.Challenges to computational aerothermodynamic simulation and validation for planetary entry vehicle analysis. NASA RTO-EN-AVT- 186, 2010
    [12] Gnoffo PA. Functional equivalence acceptance testing of FUN3D for entry descent and landing applications. AIAA Paper 2013-2558, 2013
    [13] 原志超. 高超声速气动热数值模拟研究. [博士论文] 大连: 大连理工大学, 2017
    [13] (Yuan Zhichao.Numencal simulation research on hypersonic aero-heating. [PhD Thesis]. Dalian: Dalian Univesity of Technology, 2017 (in Chinese))
    [14] Davis SF.A rotationally biased upwind difference scheme for the Euler equations. Journal of Com-putational Physics , 1984, 56(1): 65-92
    [15] Levy DW, Powell KG, Van Leer Bram.Use of a rotated Riemann solver for the two-dimensional Euler equations. Journal of Computational Physics , 1993, 106: 201-214
    [16] Nishikawa H, Kitamura K.Very simple, Carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers. Journal of Computational Physics , 2008, 227: 2560-2581
    [17] Holmes D, Connell S. Solution of the 2D Navier-Stokes equations on unstructured adaptive grids. AIAA Paper 1989-1548, 1989
    [18] Kim SE, Makarov B, Caraeni D. A multi-dimensional linear reconstruction scheme for arbitrary unstructured grids. AIAA Paper 2003-3990, 2003
    [19] Park JS, Kim C.Multi-dimensional limiting process for finite volume methods on unstructured grids. Computers and Fluids , 2012, 65: 8-24
    [20] Li W, Ren YX. Lei GD, et al.The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids. Journal of Computational Physics , 2011, 230(21): 7775-7795
    [21] Li W, Ren YX.The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: Extension to high order finite volume schemes. Journal of Computational Physics , 2012, 231(11):4053-4077
    [22] 赫新, 赵钟, 张来平. 大型通用CFD软件体系结构与数据结构研究. 空气动力学学报, 2012, 30(5): 557-565
    [22] (He Xin, Zhao Zhong, Zhang Laiping.Research of general large scale CFD software architecture and data structure. Acta Aerodynamica Sinica , 2012, 30(5): 557-565 (in Chinese))
    [23] He X, Zhao Z, Zhang LP.The research and development of structured-unstructured hybrid CFD software. Transactions of Nanjing University of Aeronautics & Astronautics , 2013, 30(sup): 116-126
    [24] 赵钟, 赫新, 张来平. HyperFLOW软件数值模拟Trap Wing高升力外形. 空气动力学学报, 2015, 33(5): 594-602
    [24] (Zhao Zhong, He Xin, Zhang Laiping.Numerical research of NASA high-lift Trap Wing model based on Hyper-FLOW. Acta Aerodynamica Sinica , 2015, 33(5): 594-602 (in Chinese))
    [25] Van Leer B.Flux-vector splitting for the Euler equations. Numerical Methods in Fluid Dynamics , 1982, 170: 507-512
    [26] Venkatakrishnan V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. Journal of Computational Physics , 1995, 118: 120-130
    [27] Shima E, Kitamura K, Haga T.Green-Gauss/weighted-least-squares hybrid gradient reconstruction for arbitrary polyhedral unstructured grids. AIAA Journal , 2013, 52(11): 2740-2747
    [28] 万云博, 马戎, 王年华等. Venka-takrishnan限制器对非结构/混合网格二阶精度有限体积法热流预测精度的影响. 空气动力学学报, 2018 (已录用)
    [28] (Wang Yunbo, Ma Rong, Wang Nianhua, et al. Assessment of Venkatakrishnan limiter on hypersonic aeroheating predictions for second order finite volume methods on unstructured/hybrid grids. Acta Aerodynamica Sinica, 2018 (accepted)(in Chinese))
    [29] Fay JA, Riddell FR.Theory of stagnation point heat transfer in dissociated air. Journal of the Aerospace Sciences , 1985, 25(2): 73-85
    [30] Wieting A.R. Experimental study of shock wave interference heating on cylindrical leading edge.NASA TM-100484, 1987
    [31] 李素循. 典型外形高超声速流动特性. 北京: 国防工业出版社, 2007: 63-71
    [31] (Li Suxun.Hypersonic Characteristic of Typical Con-figuration. Beijing: National Defense Industry Press, 2007: 63-71 (in Chinese))
  • 加载中
计量
  • 文章访问数:  701
  • HTML全文浏览量:  51
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 刊出日期:  2018-09-18

目录

    /

    返回文章
    返回