EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

老化对PP/SSFs导电复合材料结构及 应力松弛性能的影响

朱振华 邵柏军 王俊 邵宇 陈建康 张明华

朱振华, 邵柏军, 王俊, 邵宇, 陈建康, 张明华. 老化对PP/SSFs导电复合材料结构及 应力松弛性能的影响[J]. 力学学报, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080
引用本文: 朱振华, 邵柏军, 王俊, 邵宇, 陈建康, 张明华. 老化对PP/SSFs导电复合材料结构及 应力松弛性能的影响[J]. 力学学报, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080
Zhu Zhenhua, Shao Baijun, Wang Jun, Shao Yu, Chen Jiankang, Zhang Minghua. EFFECT OF AGING ON STRUCTURE AND STRESS RELAXATION OF PP/SSFs COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080
Citation: Zhu Zhenhua, Shao Baijun, Wang Jun, Shao Yu, Chen Jiankang, Zhang Minghua. EFFECT OF AGING ON STRUCTURE AND STRESS RELAXATION OF PP/SSFs COMPOSITES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 517-526. doi: 10.6052/0459-1879-18-080

老化对PP/SSFs导电复合材料结构及 应力松弛性能的影响

doi: 10.6052/0459-1879-18-080
基金项目: 国家自然科学基金 (11202110,11472141,U1330101)和宁波市自然科学基金(2017A610046)资助项目.
详细信息
    作者简介:

    通讯作者:张明华,教授,主要研究方向:导电复合材料. E-mail:zhangminghua@nbu.edu.cn

    通讯作者:

    张明华

  • 中图分类号: TB125,TB324;

EFFECT OF AGING ON STRUCTURE AND STRESS RELAXATION OF PP/SSFs COMPOSITES

  • 摘要: 导电高聚物复合材料具有柔性好、导电性可调、容易成型及生产成本低等优点,并具有抗静电、电磁屏蔽/吸波、压力/温度敏感性 等特点,可以作为功能材料在诸多领域应用. 但是在加工、储运和使用过程中,由于多种因素综合影响,不可避免发生老化并导致其性能劣化. 通过熔融共混、注塑成型的方法制备不锈钢短纤维(SSFs)填充聚丙烯(PP)导电复合材料,将其进行加速湿热老化和紫外老化,测定应 力松弛曲线以及松弛条件下电阻率变化规律,通过X射线粉末衍射仪分析老化前后结晶度的变化,借助扫描电子显微镜(SEM)观察研究老化前后材 料的微观形貌,并进行能谱(EDS)分析. 研究结果表明,应力松弛曲线有明显的三阶段特征,且湿热老化材料松弛后的应力水平降低. 材料的初始电阻率随填料含量的增加而降低,老化使材料的初始电阻率增大. 由于导电高聚物的压阻效应,使得达到应力松弛起始应力前,即材料在获得特定应力的加载阶段,电阻率随载荷增加显著降低,而在随后 的松弛阶段,材料电阻率则趋于一个稳定值并在较小的范围内波动. SEM/EDS分析结果表明,随着老化时间的延长,试样表面氧元素含量增加,且氧元素含量随距表面深度的增加而减小. XRD分析结果表明,材料的结晶度随填料含量的增加而减小,随老化时间的延长也呈减小趋势. 研究结果可为研究导电高聚物复合材料的老化性能提供实验依据.

     

  • [1] Wang S, Chung DDL.Negative piezoresistivity in continuous carbon fiber epoxy-matrix composite.Journal of Materials Science, 2007, 42(13): 4987-4995
    [2] Qu S, Wong SC.Piezoresistive behavior of polymer reinforced by expanded graphite. Composites Science & Technology, 2007, 67(2): 231-237
    [3] 周剑锋, 宋义虎, 郑强. 聚合物基导电复合材料的黏弹性电阻响应. 中国新技术新产品, 2015(21): 53-54
    [3] (Zhou Jianfeng, Song Yihu, Zheng Qiang.Viscoelastic resistance response of polymer based conductive composites. New Technology & New Products in China, 2015 (21): 53-54 (in Chinese))
    [4] 刘虎. 柔性热塑性聚氨酯导电纳米复合材料的应激响应及其机理研究. [博士论文]. 郑州: 郑州大学, 2017
    [4] (Liu Hu.Stress response and mechanism of flexible thermoplastic polyurethane conductive nanocomposites. [PhD Thesis]. Zhengzhou: Zhengzhou University, 2017(in Chinese))
    [5] 徐佩, 王小溪, 胡亚东等. 烯丙基离子液体修饰炭黑/硅橡胶复合材料的压阻特性. 高分子材料科学与工程, 2017, 33(6): 65-69
    [5] (Xu Pei, Wang Xiaoxi, Hu Yadong, et al.The piezoresistive properties of allyl ionic liquid modified carbon black / silicone rubber composites.Polymeric Materials Science and Engineering, 2017, 33(6): 65-69(in Chinese))
    [6] 索倩倩. 以聚丁烯为基体发泡材料的制备与性能研究. [硕士论文]. 北京化工大学, 2016
    [6] (Suo Qianqian.Preparation and properties of polybutene-based foamed material. [Master Thesis]. Beijing: Beijing University of Chemical Technology, 2016 (in Chinese))
    [7] 左哲伟, 夏志东, 聂京凯等. 碳纤维填充对导电硅橡胶压阻效应及电阻蠕变行为的影响. 材料导报, 2016, 30(s2): 440-443
    [7] (Zuo Zhewei, Xia Zhidong, Nie Jingkai, et al.Influence of carbon fiber filling on the piezoresistive effect and resistance creep behavior of conductive silicone rubber. Materials Review, 2016, 30(s2): 440-443 (in Chinese))
    [8] Wang P, Ding T.Conductivity and piezoresistivity of conductive carbon black filled polymer composite.Journal of Applied Polymer Science, 2010, 116(4): 2035-2039
    [9] 张智枢, 顾欣, 杨云云等. 聚乙烯管材专用料(PE-XRT70)应力松弛和蠕变行为. 四川大学学报(工程科学版), 2017, 49(2): 232-239
    [9] (Zhang Zhishu, Gu Xin, Yang Yunyun, et al.Stress relaxation and creep behavior of polyethylene pipe special material (PE-XRT70). Journal of Sichuan University ( Engineering Science), 2017, 49(2): 232-239 (in Chinese))
    [10] 张晓萌, 姚占勇, 张硕等. 应力松弛对PET/炭黑/碳纤维复合材料影响规律分析. 工程塑料应用, 2017, 45(4): 99-103
    [10] (Zhang Xiaomeng, Yao Zhanyong, Zhang Shuo, et al.Analysis of the influence of stress relaxation on PET/carbon black/carbon fiber composites.Engineering Plastics Application, 2017, 45(4): 99-103(in Chinese))
    [11] 蔡利海, 张诚, 郭宝华等. 尼龙1010应力松弛行为研究. 高分子学报, 2016(3): 382-390
    [11] (Cai Lihai, Zhang Cheng, Guo Baohua, et al.Study on stress relaxation behavior of nylon 1010. Acta Polymerica Sinica, 2016 (3): 382-390(in Chinese))
    [12] 许珊珊, 张营营, 张其林. PTFE膜材的应力松弛性能及预测模型分析. 应用数学和力学, 2016, 37(3): 266-276
    [12] (Xu Shanshan, Zhang Yingying, Zhang Qilin.PTFE membrane material analysis of stress relaxation properties and prediction model of.Applied Mathematics and Mechanics, 2016, 37(3): 266-276 (in Chinese))
    [13] Zheng Q, Zhou JF, Song YH.Time-dependent uniaxial piezoresistive behavior of high-density polyethylene/short carbon fiber conductive composites.Journal of Materials Research, 2004, 19(9): 2625-2634
    [14] Wang L, Ding T, Wang P.Effects of instantaneous compression pressure on electrical resistance of carbon black filled silicone rubber composite during compressive stress relaxation.Composites Science & Technology, 2008, 68(15-16): 3448-3450
    [15] Wang L, Han Y.Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite.Composites Part Applied Science & Manufacturing, 2013, 47(1): 63-71
    [16] Zhai T, Li D, Fei G, et al.Piezoresistive and compression resistance relaxation behavior of water blown carbon nanotube/polyurethane composite foam.Composites Part Applied Science & Manufacturing, 2015, 72: 108-114
    [17] 陈明, 贾来兵, 尹协振. 描述鱼鳍材料松弛特性的分数Zener模型. 力学学报, 2011, 43(1): 217-220
    [17] (Chen Ming, Jia Laibing, Yin Xiezhen.Fractional Zener model describing the relaxation characteristics of fins. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 217-220 (in Chinese))
    [18] 彭凡, 顾勇军, 马庆镇. 热环境中黏弹性功能梯度材料及其结构的蠕变. 力学学报, 2012, 44(2): 308-316
    [18] (Peng Fan, Gu Yongjun, Ma Qingzhen.Creep of viscoelastic functionally graded material structure in thermal environment. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 308-316 (in Chinese))
    [19] 杜伯学, 侯兆豪, 徐航等. 高压直流电缆绝缘用聚丙烯及其纳米复合材料的研究进展. 高电压技术, 2017 (9): 2769-2780
    [19] (Du Boxue, Hou Zhaoxu, Xu Hang, et al.Research progress on polypropylene for high voltage DC cable insulation and its nanocomposites.High Voltage Engineering, 2017 (9): 2769-2780(in Chinese))
    [20] 倪玲贵, 买买提江·依米提, 热依扎·别坎, 等. 不同老化方法对聚丙烯老化程度的影响. 塑料工业, 2017, 45(1): 93-96
    [20] (Ni Linggui, Maomatijiang Yimiti, Reizha Beikan, et al.Effect of different aging methods on polypropylene aging.China Plastics Industry, 2017, 45(1): 93-96(in Chinese))
    [21] 李洋, 李培耀, 郭兵等. 聚丙烯热氧加速老化评估和使用寿命的研究. 塑料工业, 2015, 43(11): 93-96
    [21] (Li Yang, Li Peiyao, Guo Bing, et al.Study on accelerated aging evaluation and service life of polypropylene thermal oxidation.China Plastics Industry, 2015, 43(11): 93-96 (in Chinese))
    [22] 田瑶君, 秦军, 陆之洋等. 聚丙烯户外自然光老化失效分析. 塑料, 2016(3): 97-99
    [22] (Tian Yaojun, Qin Jun, Lu Zhiyang, et al.Failure analysis of outdoor natural light aging of polypropylene.Plastic, 2016 (3): 97-99(in Chinese))
    [23] Grabmayer K, Beißmann S, Wallner GM, et al.Characterization of the influence of specimen thickness on the aging behavior of a polypropylene based model compound.Polymer Degradation & Stability, 2014, 111: 185-193
    [24] Wanasekara N, Chalivendra V, Calvert P, et al.Sub-micron scale mechanical properties of polypropylene fibers exposed to ultraviolet and thermal degradation.Polymer Degradation & Stability, 2011, 96(4): 432-437
    [25] Yano A, Akai N, Ishii H, et al.Thermal oxidative degradation of additive-free polypropylene pellets investigated by multichannel Fourier-transform chemiluminescence spectroscopy.Polymer Degradation & Stability, 2013, 98(12): 2679-2686
    [26] Lv Y, Huang Y, Yang J, et al.Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study.Polymer Degradation & Stability, 2015, 112: 145-159
    [27] 付云伟, 张龙, 倪新华等. 考虑夹杂相互作用的复合陶瓷夹杂界面的断裂分析. 力学学报, 2016, 48(1): 154-162
    [27] (Fu Yunwei, Zhang Long, Ni Xinhua, et al.Interface cracking analysis with inclusions interaction in composite ceramic.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 154-162 (in Chinese))
    [28] 徐业守, 徐赵东, 葛腾等. 黏弹性材料等效分数阶微观结构标准线性固体模型. 力学学报, 2017, 49(5): 1059-1069
    [28] (Xu Yeshou, Xu Zhaodong, Ge Teng, et al.Equivalent fractional order micro-structure standard linear solid model for viscoelastic materials.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(5): 1059-1069 (in Chinese))
    [29] 张作启, 刘彬. 任意加载模式下含裂纹超弹性体的能量释放率. 力学学报, 2013, 45(1): 129-133
    [29] (Zhang Zuoqi, Liu Bin.Energy release rate of cracked superelastic body under arbitrary loading mode.Journal of Mechanics, 2013, 45(1): 129-133 (in Chinese))
    [30] 唐景, 彭丽霞, 张增明等. 不同老化模式对光伏背板中PET结晶度的影响. 合成材料老化与应用, 2011, 40(2): 40-46
    [30] (Tang Jing, Peng Lixia, Zhang Zengming, et al.Crystallinity of PET in photovoltaioc backsheet under different ageing pattern.Synthetic Materials Aging and Application, 2011, 40(2): 40-46(in Chinese))
    [31] 周韫捷, 李红雷, 王琦梦等. 加速热老化对XLPE电缆绝缘力学性能和介电性能的影响研究. 华东电力, 2014, 42(8): 1606-1610
    [31] (Zhou Yunjie, Li Honglei, Wang Qimeng, et al.Effect of accelerated thermal aging on mechanical and dielectric properties of XLPE cable insulation.East China Electric Power, 2014, 42(8): 1606-1610 (in Chinese))
    [32] 徐俊, 王晓东, 欧阳本红, 等. 热老化对交联聚乙烯电缆绝缘理化结构的影响. 绝缘材料, 2013(2): 33-37
    [32] (Xu Jun, Wang Xiaodong, Ouyang Benhong, et al.Effect of thermal aging on the physicochemical structure of XLPE cable insulation. Insulating Materials, 2013(2): 33-37 (in Chinese))
    [33] 姚培培, 李琛, 肖生苓. 紫外老化对聚苯乙烯泡沫性能的影响. 化工学报, 2014, 65(11): 4620-4626
    [33] (Yao Peipei, Li Chen, Xiao Shengling.Effect of ultraviolet aging on properties and structure of polystyrene.Journal of Chemical Industry and Engineering(China), 2014, 65(11): 4620-4626 (in Chinese))
    [34] 代军, 晏华, 郭骏骏等. 结晶度对高密度聚乙烯热氧老化特性的影响. 高分子材料科学与工程, 2016, 32(9): 65-71
    [34] (Dai Jun, Yan Hua, Guo Junjun, et al.Effect of crystallinity on thermal aging properties of high density Polyethylene.Polymeric Materials Science and Engineering, 2016, 32(9): 65-71 (in Chinese))
    [35] 刘一鸣, 胡贵, 吴智华. 抗氧剂对无规共聚聚丙烯抗紫外光老化性能的影响. 塑料科技, 2012, 40(12): 84-88
    [35] (Liu Yiming, Hu Gui, Wu Zhihua.Effect of antioxidants on the anti-ultraviolet aging behavior of polypropylene random copolymer.Plastics Science and Technology, 2012, 40(12): 84-88 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1062
  • HTML全文浏览量:  90
  • PDF下载量:  454
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回