EI、Scopus 收录
中文核心期刊

考虑非局部效应和记忆依赖微分的广义热弹问题

张培, 何天虎

张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题[J]. 力学学报, 2018, 50(3): 508-516. DOI: 10.6052/0459-1879-18-079
引用本文: 张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题[J]. 力学学报, 2018, 50(3): 508-516. DOI: 10.6052/0459-1879-18-079
Zhang Pei, He Tianhu. A GENERALIZED THERMOELASTIC PROBLEM WITH NONLOCAL EFFECT AND MEMORY- DEPENDENT DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516. DOI: 10.6052/0459-1879-18-079
Citation: Zhang Pei, He Tianhu. A GENERALIZED THERMOELASTIC PROBLEM WITH NONLOCAL EFFECT AND MEMORY- DEPENDENT DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516. DOI: 10.6052/0459-1879-18-079
张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题[J]. 力学学报, 2018, 50(3): 508-516. CSTR: 32045.14.0459-1879-18-079
引用本文: 张培, 何天虎. 考虑非局部效应和记忆依赖微分的广义热弹问题[J]. 力学学报, 2018, 50(3): 508-516. CSTR: 32045.14.0459-1879-18-079
Zhang Pei, He Tianhu. A GENERALIZED THERMOELASTIC PROBLEM WITH NONLOCAL EFFECT AND MEMORY- DEPENDENT DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516. CSTR: 32045.14.0459-1879-18-079
Citation: Zhang Pei, He Tianhu. A GENERALIZED THERMOELASTIC PROBLEM WITH NONLOCAL EFFECT AND MEMORY- DEPENDENT DERIVATIVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 508-516. CSTR: 32045.14.0459-1879-18-079

考虑非局部效应和记忆依赖微分的广义热弹问题

基金项目: 国家自然科学基金资助项目(11372123).
详细信息
    作者简介:

    通讯作者:何天虎,教授,主要研究方向:多场耦合及电磁固体力学. E-mail:heth@lut.edu.cn

    通讯作者:

    何天虎

  • 中图分类号: O343.6;

A GENERALIZED THERMOELASTIC PROBLEM WITH NONLOCAL EFFECT AND MEMORY- DEPENDENT DERIVATIVE

  • 摘要: 现有的广义热弹理论主要适用于求解时间尺度极短但空间尺度仍属宏观尺度的广义热弹问题的动态响应,而当所研究的弹性体的特征几何尺寸也属微尺度时,弹性体的力学响应将呈现出强烈的尺寸相关性,现有的广义热弹理论不再适用. 本文基于通过非局部效应和记记依赖微分修正的广义热弹性理论,研究了两端固定、受移动热源作用的有限长热弹杆的动态响应. 建立了问题的控制方程,给出了问题的初始条件及边界条件,运用拉普拉斯变换及其数值反变换,对方程进行了求解. 数值计算中,首先考察了时间延迟因子对模型所预测各物理量分布的影响;然后对比了模型中的时间延迟因子在两种不同类别核函数下(通过归一化条件修正和未修正形式)对各物理量分布的影响效应;最后考察了考虑新的可以描述尺寸效应的非局部因子对无量纲温度、位移及应力的影响,并用图形进行了示例. 结果表明, 时间延迟因子增大,各物理量的峰值变大,传播距离变小,且时间延迟因子在归一化条件修正过的核函数下影响更加显著;非局部参数几乎不影响无量纲温度的分布,轻微影响无量纲位移的分布,但对无量纲应力的峰值的影响显著.
    Abstract: The existing generalized thermoelastic theory is mainly applicable to obtain the dynamic responses of the problems in which the time scale is extremely short while the spatial scale is still macro-scale. Nevertheless, when the characteristic length scale of elastic body is also of micro-scale, the dynamic responses of the elastic body will take on intense size-dependent effect, and the existing generalized thermoelastic theory will be no longer suitable for such problems. In present work, based upon the generalized thermoelasticity with nonlocal effect and memory-dependent derivative, the dynamic response of a finite thermoelastic rod fixed at both ends and subjected to a moving heat source is investigated. The corresponding governing equations of the problem are formulated and the initial conditions as well as the boundary conditions are specified. Then, the governing equations are solved by means of Laplace transform and its numerical inversion. In calculation, first, the influence of the time-delay factor on the distributions of the considered physical quantity was examined. Then, the influence of the time-delay factor on the distributions of the considered variables under two kinds of kernel functions (i.e. normalized form and unmodified form) was compared. Last, the influence of the nonlocal factor on the dimensionless temperature, displacement and stress is considered and illustrated graphically. The results show that: with the increase of the time-delay factor, the heat wave propagation velocity becomes smaller, the peak values of the physical quantities become larger, and the influence of the time delay factor on the considered variables is more significant in the case with the kernel function modified by normalized condition than that with unmodified kernel function; The non-local parameter barely affects the distribution of the dimensionless temperature, slightly affects the distribution of the dimensionless displacement, while markedly affects the peak values of the dimensionless stress.
  • [1] Biot MA.Thermoelasticity and irreversible thermodynamics.Journal of Applied Physics, 1956, 27(3): 240-253
    [2] 田晓耕, 沈亚鹏. 广义热弹性问题研究进展. 力学进展, 2012, 42(1): 18-28
    [2] (Tian Xiaogeng, Shen Yapeng. Research progress of the generalized thermoelasticity.Advances in Mechanics, 2012, 42(1): 18-28 (in Chinese))
    [3] Peshkov V.Second sound in helium II.Journal of Physics, 1944, 8: 381-386
    [4] Cattaneo C.A form of heat conduction equation which eliminates the paradox of instantaneous propagation.Comptes Rendus Physique, 1958, 247: 431-433
    [5] Vernotte PM, Hebd CR.Paradoxes in the continuous theory of the heat conduction.Comptes Rendus de l’Académie des Sciences, 1958, 246: 3154-3155
    [6] Wang H, Dai W, Melnik R.A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers.International Journal of Thermal Sciences, 2006, 45(12): 1179-1196
    [7] Chen JK, Beraun JE, Tham CL.Ultrafast thermoelasticity for short-pulse laser heating. International Journal of Thermal Sciences, 2004, 42(8-9): 793-807
    [8] Lord HW, Shulman YA.A generalized dynamical theory of thermoelasticity.Journal of the Mechanics and Physics of Solids, 1967, 15: 299-309
    [9] Green AE, Lindsay KA.Thermoelasticity.Journal of Elasticity, 1972, 2(1): 1-7
    [10] Green AE, Naghdi PM.Thermoelasticity without energy dissipation.Journal of Elasticity, 1993, 31(3): 189-208
    [11] Youssef HM.Theory of two-temperature-generalized thermoelasticity.IMA Journal of Applied Mathematics, 2006, 71(3): 383-390
    [12] Tzou DY.A unified field approach for heat conduction from macro- to micro-scales.Journal of Heat Transfer, 1995, 117(1): 8-16
    [13] Qi XL, Suh CS.Generalized thermo-elastodynamics for semiconductor material subject to ultrafast laser heating. Part I: Model description and validation.International Journal of Heat and Mass Transfer, 2010, 53(1): 41-47
    [14] Kuang ZB.Variational principles for generalized dynamical theory of thermopiezoelectricity.Acta Mechanica, 2009, 203(1-2): 1-11
    [15] Wang YZ, Zhang XB, Song XN.A generalized theory of thermoelasticity based on thermomass and its uniqueness theorem.Acta Mechanics, 2014, 225(3): 797-808
    [16] Podlubny I. Fractional Differential Equations.New York: Academic Press, 1999
    [17] Meral FC, Royston TJ, Magin R.Fractional calculus in viscoelasticity: An experimental study.Communications in Nonlinear Science and Numerical Simulation, 2010, 15: 939-945
    [18] Sherief HH, El-Sayed AMA, El-Latief AMA.Fractional order theory of thermoelasticity.International Journal of Solids and Structures, 2010, 47(2): 269-275
    [19] Youssef HM.Theory of fractional order generalized thermoelasticity.Journal of Heat Transfer, 2010, 132(6): 61301
    [20] Ezzat MA, Karamany ASE.Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures.Zeitschrift für angewandte Mathematik und Physik. 2011, 62(5): 937-952
    [21] 马永斌. 分数阶广义热弹性理论下多场耦合问题动态响应研究. [博士论文]. 兰州:兰州理工大学, 2017
    [21] (Ma Yongbin. The dynamic response of multi-field coupling problem under the fractional generalized thermoelasticity. [PhD Thesis]. Lanzhou: Lanzhou University of Technology, 2017 (in Chinese))
    [22] 徐业守,徐赵东,何天虎等. 热冲击下理想黏结三明治板的分数阶广义热弹性问题分析.东南大学学报(自然科学版), 2017, 47(1): 130-136
    [22] (Xu Yeshou, Xu Zhaodong, He Tianhu, et al. Analysis of the fractional order generalized thermal elasticity of the ideal bonded sandwich board under thermal shock.Journal of Southeast University ( Natural Science Edition), 2017, 47(1): 130-136 (in Chinese))
    [23] Diethelm K.Analysis of Fractional Differential Equation: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Berlin, Heidelberg: Springer-Verlag, 2010
    [24] Wang JL, Li HF.Surpassing the fractional derivative: concept of the memory-dependent derivative.Computers & Mathematics with Applications, 2011, 62(3): 1562-1567
    [25] Yu YJ, Hu W, Tian XG.A novel generalized thermoelasticity model based on memory-dependent derivative.International Journal of Engineering Science, 2014, 81(811): 123-134
    [26] El-Karamany AS, Ezzat MA.Modified Fourier’s law with time-delay and kernel function: Application in thermoelasticity.Journal of Thermal Stresses, 2015, 38(7): 811-834
    [27] Ezzat MA, El-Karamany AS, El-Bary AA.Electro-thermoelasticity theory with memory-dependent derivative heat transfer.International Journal of Engineering Science, 2016, 99: 22-38
    [28] Yu YJ, Tian XG, Liu XR.Size-dependent generalized thermoelasticity using Eringen’s nonlocal model.European Journal of Mechanics, 2015, 51: 96-106
    [29] Lotfy K, Sarkar N.Memory-dependent derivatives for photothermal semiconducting medium in generalized thermoelasticity with two-temperature.Mechanics of Time-Dependent Materials, 2017, 21(4): 519-534
    [30] Ezzat MA, El-Karamany AS, El-Bary AA.On dual-phase-lag thermoelasticity theory with memory-dependent derivative.Mechanics of Composite Materials & Structures, 2017, 24(11): 908-916
    [31] Ezzat MA, El-Bary AA.Thermoelectric MHD with memory-dependent derivative heat transfer.International Communications in Heat & Mass Transfer, 2016, 75: 270-281
    [32] Shaw S.A note on the generalized thermoelasticity theory with memory-dependent derivatives.Journal of Heat Transfer, 2017, 139(9): 092005
    [33] Eringen AC.Nonlocal continuum field theories.Applied Mechanics Reviews, 2003, 56(2): 391-398
    [34] Aifantis EC.Gradient deformation models at nano, micro, and macro scales.Journal of Materials Processing Technology, 1999, 212: 189-202
    [35] Yang F, Chong A, Lam D, et al.Couple stress based strain gradient theory for elasticity.International Journal of Solids & Structures, 2002, 39: 2731-2743
    [36] Li CL, Guo HL, Tian XG.A size-dependent generalized thermoelastic diffusion theory and its application.Journal of Thermal Stresses, 2017, 40(5): 603-626
    [37] Brancik L. Programs for fast numerical inversion of Laplace transforms in MATLAB language environment//Proceedings of the 7th Conference MATLAB’99, pp. 27-39, Czech Republic, Prague, 1999
  • 期刊类型引用(6)

    1. 马永斌,李东升. 考虑记忆效应及尺寸效应窄长薄板的磁-热弹性耦合动态响应. 应用数学和力学. 2022(08): 888-900 . 百度学术
    2. 吴华,邹绍华,徐成辉,尉亚军,邓子辰. 广义热弹模型的热力学基础与瞬态响应. 力学学报. 2022(10): 2796-2807 . 本站查看
    3. 许光映,王晋宝,薛大文. 短脉冲激光加热分数阶导热及其热应力研究. 力学学报. 2020(02): 491-502 . 本站查看
    4. 李妍,何天虎,田晓耕. 超短激光脉冲加热薄板的广义热弹扩散问题. 力学学报. 2020(05): 1255-1266 . 本站查看
    5. 李吉伟,何天虎. 考虑应变率的广义压电热弹理论及其应用. 力学学报. 2020(05): 1267-1276 . 本站查看
    6. 王现辉,李方琳,刘宇建,陈会涛,禹建功. 板中热弹波传播:一种改进的勒让德多项式方法. 力学学报. 2020(05): 1277-1285 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  1460
  • HTML全文浏览量:  172
  • PDF下载量:  667
  • 被引次数: 15
出版历程
  • 收稿日期:  2018-03-18
  • 刊出日期:  2018-05-17

目录

    /

    返回文章
    返回