EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

折纸及其折痕设计研究综述

李笑 李明

李笑, 李明. 折纸及其折痕设计研究综述[J]. 力学学报, 2018, 50(3): 467-476. doi: 10.6052/0459-1879-18-031
引用本文: 李笑, 李明. 折纸及其折痕设计研究综述[J]. 力学学报, 2018, 50(3): 467-476. doi: 10.6052/0459-1879-18-031
Li Xiao, Li Ming. A REVIEW OF ORIGAMI AND ITS CREASE DESIGN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476. doi: 10.6052/0459-1879-18-031
Citation: Li Xiao, Li Ming. A REVIEW OF ORIGAMI AND ITS CREASE DESIGN[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476. doi: 10.6052/0459-1879-18-031

折纸及其折痕设计研究综述

doi: 10.6052/0459-1879-18-031
基金项目: 国家自然科学基金资助项目(11672056).
详细信息
    作者简介:

    通讯作者:李明,副教授,主要研究方向:优化设计、纳米力学、柔性电子. E-mail:mingli@dlut.edu.cn

    通讯作者:

    李明

  • 中图分类号: O342;

A REVIEW OF ORIGAMI AND ITS CREASE DESIGN

  • 摘要: 折纸是指不经剪裁和粘接,将二维平面纸张折叠成三维立体的方法,具有设计简单、成形迅速、适用范围广等优点,在可展开式结构、结构组装与自成型等领域有着广阔的应用前景. 本文首先简述了多种典型的新式折纸应用,如屈曲诱导的微尺度三维结构、可折叠太阳能电池板、DNA螺旋组装结构等;根据折纸的曲线折痕数量、相对运动、刚性折叠面、使用纸张数量界定折纸的分类;然后 折痕设计是实现折纸结构的核心问题,着重阐述了折纸的折痕设计方面,包括梳理折痕设计的基本条件,给出若干典型折痕设计如三浦折痕设计、水弹折痕设计、吉村式折痕设计和对角线型折痕设计,介绍典型折痕设计的显著特点及几何条件,将目前折纸折痕设计的创新方法归纳为对经典折痕设计适当改进、形成折痕设计数据库、利用拓扑优化方法、借助成型的汇编算法等;最后,基于当前折纸的研究进展对未来的研究方向进行了展望,其中涉及到可重构折纸结构、四维折纸、多材料折纸和多尺度折纸等.

     

  • [1] Blees MK, Barnard AW, Rose PA, et al.Graphene kirigami.Nature, 2015, 524(7564): 204-207
    [2] Debnath S, Fei LJ.Origami theory and its applications: A literature review.International Journal of Social, Business, Psychological, Human Science and Engineering, 2013, 7(1): 1131-1135
    [3] Demaine ED.Folding and unfolding linkages, paper, and polyhedra//Akiyama J, Kano M, Urabe M, eds. Discrete and Computational Geometry, Japanese Conference on Discrete and Computational Geometry, Tokyo, 2000: 113-124
    [4] Peraza-Hernandez EA, Hartl DJ, Malak Jr RJ, et al.Origami-inspired active structures: A synthesis and review.Smart Materials and Structures, 2014, 23(9): 094001
    [5] Turner N, Goodwine B, Sen M.A review of origami applications in mechanical engineering.Journal of Mechanical Engineering Science, 2016, 230(14): 2345-2362
    [6] Rogers J, Huang YG, Schmidt OG, et al.Origami mems and nems.Mrs Bulletin, 2016, 41(2): 123-129
    [7] Liu Y, Yan Z, Lin Q, et al.Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling and experimental validation.Advanced functional materials, 2016, 26(17): 2909-2918
    [8] Yan Z, Han MD, Yang YY, et al.Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress.Extreme Mechanics Letters, 2017, 11: 96-104
    [9] Zhang YH, Yan Z, Nan KW, et al.A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.Proceedings of the National Academy of Sciences, 2015, 112(38): 11757-11764
    [10] Song ZM, Wang X, Lü C, et al.Kirigami-based stretchable lithium-ion batteries. Scientific Reports, 2015, 5: 10988
    [11] Miyashita S, Meeker L, Tolley MT, et al.Self-folding miniature elastic electric devices.Smart Materials and Structures, 2014, 23(9): 094005
    [12] Beker C, Turgut AE, Özcan O, et al.Design of a novel foldable flapping wing micro air vehicle//9th Ankara international aerospace conference, Ankara Turkey, 2017. 138
    [13] Nelson A, Belitsky JM, Vidal S, et al.A self-assembled multivalent pseudopolyrotaxane for binding galectin-1. Journal of the American Chemical Society, 2004, 126(38): 11914-11922
    [14] Randall CL, Gultepe E, Gracias DH.Self-folding devices and materials for biomedical applications.Trends in Biotechnology, 2012, 30(3): 138-146
    [15] Kuribayashi K, Tsuchiya K, You Z, et al.Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil.Materials Science and Engineering: A, 2006, 419(1): 131-137
    [16] Cybulski JS, Clements J, Prakash M.Foldscope: origami-based paper microscope.PloS One, 2014, 9(6): 0098781
    [17] Hideo Komatsu Book Review. Available from: .
    [18] Tseng H-Y.Analysis of design application on structural model of origami//International Conference on Applied System Innovation, Sapporo, Japan, 2017. 17058968
    [19] Zhu L, Igarashi T, Mitani J.Soft folding.Computer Graphics Forum, 2013, 32(7): 167-176
    [20] Quy$\acute{ê}$t HT. Flickr. Available from:
    [21] Bowen LA, Baxter WL, Magleby SP, et al.A position analysis of coupled spherical mechanisms found in action origami.Mechanism and Machine Theory, 2014, 77: 13-24
    [22] Jacobsen JO, Winder BG, Howell LL, et al.Lamina emergent mechanisms and their basic elements.Journal of Mechanisms and Robotics, 2010, 2(1): 011003
    [23] Bowen LA, Grames CL, Magleby SP, et al.An approach for understanding action origami as kinematic mechanisms//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, 2013. V06BT07A044
    [24] Greenberg HC, Gong ML, Magleby SP, et al.Identifying links between origami and compliant mechanisms. Mechanical Sciences, 2011, 2(2): 217-225
    [25] Yan C, Rui P, Zhong Y.Origami of thick panels.Science, 2015, 349(6246): 396-400
    [26] Tachi T.Rigid-foldable thick origami//Wang-Iverson P, Lang RJ, Yim M, eds. Origami 5. 2011, 5: 253-264
    [27] Schenk M, Guest SD.Geometry of Miura-folded metamaterials.Proceedings of the National Academy of Sciences, 2013, 110(9): 3276-3281
    [28] Robert J Lang Origami. Available from:
    [29] MATT SHLIAN.Available from:
    [30] Lang RJ, Demaine ED. Facet ordering and crease assignment in uniaxial Bases//Lang RJ, ed. Origami 4. 2009, 4: 189-206
    [31] Dacorogna B, Marcellini P, Paolini E.Origami and partial differential equations.Notices of AMS, 2010, 57(5): 598-606
    [32] Bern M, Hayes B.The complexity of flat origami//Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms. 1996: 175-183
    [33] Kasem A, Ghourabi F, Ida T.Origami axioms and circle extension//Proceedings of the 2011 ACM Symposium on Applied Computing, Tai Chung, Taiwan, China, 2011: 1106-1111
    [34] Overvelde JTB, de Jong TA, Shevchenko Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom.Nature Communications, 2016, 7: 10929
    [35] Song ZM, Ma T, Tang RS, et al.Origami lithium-ion batteries.Nature Communications, 2014, 5: 3140
    [36] Lee D, Kim J, Kim S, et al.The deformable wheel robot using magic-ball origami structure//ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Portland, Oregon, USA, 2013, V06BT07A040
    [37] Onal CD, Wood RJ, Rus D.An origami-inspired approach to worm robots.IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 430-438
    [38] Song J, Chen Y, Lu GX.Axial crushing of thin-walled structures with origami patterns.Thin-Walled Structures, 2012, 54: 65-71
    [39] Hunt GW, Ario I.Twist buckling and the foldable cylinder: an exercise in origami.International Journal of Non-Linear Mechanics, 2005, 40(6): 833-843
    [40] Wu W, You Z.A solution for folding rigid tall shopping bags.Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2011, 467(2133): 2561-2574
    [41] Yan Z, Zhang F, Wang JC, et al, Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.Advanced Functional Materials, 2016, 26(16): 2629-2639
    [42] Fu HR, Nan K, Bai WB, et al.Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics.Nature Materials, 2018, 17: 268-276
    [43] Bendsøe MP, Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224
    [44] Bendsoe MP, Sigmund O.Topology Optimization: Theory, Methods, and Applications. 2nd edn. New York: Springer Science & Business Media. 2013: 1-365
    [45] 王博,周演,周鸣. 面向连续体拓扑优化的多样性设计求解方法. 力学学报, 2016, 48(4): 984-993
    [45] (Wang Bo, Zhou Yan, Zhou Yiming.Multiple designs approach for continuum topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 984-993 (in Chinese))
    [46] 陈文炯,刘书田,张永存. 基于拓扑优化的自发热体冷却用植入式导热路径设计方法. 力学学报, 2016, 48(2): 406-412
    [46] (Chen Wenjiong, Liu Shutian, Zhang Yongcun.Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 406-412 (in Chinese))
    [47] 赵丹阳,刘韬,李红霞等. 可降解聚合物血管支架结构优化设计. 力学学报, 2017, 49(6): 1409-14179
    [47] (Zhao Danyang, Liu Tao, Li Hongxia, et al.Optimization design of degradable polymer vascular stent structure.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1409-1417 (in Chinese))
    [48] Fuchi K, Buskohl PR, Bazzan G, et al.Origami actuator design and networking through crease topology optimization.Journal of Mechanical Design, 2015, 137(9): 091401
    [49] Lang RJ, Hull TC.Origami design secrets: mathematical methods for an ancient art.The Mathematical Intelligencer, 2005, 27(2): 92-95
    [50] Demaine ED, Demaine ML.Recent results in computational origami. Hull Thomas, ed. Origami 3//Third International Meeting of Origami Science, Mathematics and Education. 2002: 3-16
    [51] Whitesides GM, Grzybowski B.Self-assembly at all scales.Science, 2002, 295(5564): 2418-2421
    [52] Tibbits S.4D printing: Multi-material shape change.Architectural Design, 2014, 84(1): 116-121
    [53] Skylar T, Carrie MK, Carlos O, et al.4D Printing and universal transformation// Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture, Los Angeles, 2014: 539-548
    [54] Meng XH, Li M, Kang Z, et al.Mechanics of self-folding of single-layer graphene.Journal of Physics D: Applied Physics, 2013, 46(5): 055308
  • 加载中
计量
  • 文章访问数:  3965
  • HTML全文浏览量:  668
  • PDF下载量:  1478
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-30
  • 刊出日期:  2018-05-18

目录

    /

    返回文章
    返回