[1] | Zheng Y, Liou MS. A novel approach of three-dimensional hybrid grid methodology: Part 1. Grid generation. Computer Methods in Applied Mechanics and Engineering, 2003, 192(37): 4147-4171 | [2] | Zhao D, Chen J, Zheng Y, et al.Fine-grained parallel algorithm for unstructured surface mesh generation. Computers & Structures, 2015, 154: 177-191 | [3] | Kadoch B, Reimann T, Schneider K, et al.Comparison of a spectral method with volume penalization and a finite volume method with body fitted grids for turbulent flows. Computers & Fluids, 2016, 133: 140-150 | [4] | Sotiropoulos F, Yang X. Immersed boundary methods for simulating fluid-structure interaction. Progress in Aerospace Sciences, 2014, 65: 1-21 | [5] | Peskin CS. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 1972, 10(2): 252-271 | [6] | Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics, 1993, 105(2): 354-366 | [7] | Saiki E M, Biringen S. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, 1996, 123(2): 450-465 | [8] | Lee C. Stability characteristics of the virtual boundary method in three-dimensional applications. Journal of Computational Physics, 2003, 184(2): 559-591 | [9] | Kolomenskiy D, Schneider K. A Fourier spectral method for the Navier-Stokes equations with volume penalization for moving solid obstacles. Journal of Computational Physics, 2009, 228(16): 5687-5709 | [10] | Kadoch B, Kolomenskiy D, Angot P, et al.A volume penalization method for incompressible flows and scalar advection-diffusion with moving obstacles. Journal of Computational Physics, 2012, 231(12): 4365-4383 | [11] | Iaccarino G, Verzicco R. Immersed boundary technique for turbulent flow simulations. Applied Mechanics Reviews, 2003, 56(3): 331-347 | [12] | Mohd-Yosuf J. Combined immersed boundary/B-spline methods for simulations of flow in complex geometries, Annual Research Briefs, Center for Turbulence Research, NASA Ames Research Center/Stanford University 1997, 317-328 | [13] | Fadlun EA, Verzicco R, Orlandi P, et al.Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 2000, 161(1): 35-60 | [14] | Mittal R, Dong H, Bozkurttas M, et al.A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of Computational Physics, 2008, 227(10): 4825-4852 | [15] | Majumdar S, Iaccarino G, Durbin P, RANS solvers with adaptive structured boundary non-conforming grids, Annual Research Briefs, NASA Ames Research Center/Stanford University. Stanford, CA, 2001, 353-366 | [16] | Tseng YH, Ferziger JH. A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 2003, 192(2): 593-623 | [17] | Qu Y, Shi R, Batra RC. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. Journal of Computational Physics, 2018, 354: 672-691 | [18] | Ghias R, Mittal R, Dong H. A sharp interface immersed boundary method for compressible viscous flows. Journal of Computational Physics, 2007, 225(1): 528-553 | [19] | Chaudhuri A, Hadjadj A, Chinnayya A. On the use of immersed boundary methods for shock/obstacle interactions. Journal of Computational Physics, 2011, 230(5): 1731-1748 | [20] | Bouchon F, Dubois T, James N. A second-order cut-cell method for the numerical simulation of 2D flows past obstacles. Computers & Fluids, 2012, 65: 80-91 | [21] | Ikeno T, Kajishima T. Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations. Journal of Computational Physics, 2007, 226(2): 1485-1508 | [22] | Seo JH, Mittal R. A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries. Journal of Computational Physics, 2011, 230(4): 1000-1019 | [23] | Haugen NEL, Kragset S. Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers. Journal of Fluid Mechanics, 2010, 661: 239-261 | [24] | Luo K, Zhuang Z, Fan J, et al.A ghost-cell immersed boundary method for simulations of heat transfer in compressible flows under different boundary conditions. International Journal of Heat and Mass Transfer, 2016, 92: 708-717 | [25] | Luo K, Mao C, Zhuang Z, et al.A ghost-cell immersed boundary method for the simulations of heat transfer in compressible flows under different boundary conditions Part-II: Complex geometries. International Journal of Heat and Mass Transfer, 2017, 104: 98-111 | [26] | Li XL, Fu DX, Ma YW, et al.Direct numerical simulation of shock/turbulent boundary layer interaction in a supersonic compression ramp. Science China Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658 | [27] | Li X, Fu D, Ma Y. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack. Physics of Fluids, 2010, 22(2): 025105 | [28] | 童福林, 李新亮, 唐志共. 激波与转捩边界层干扰非定常特性数值分析. 力学学报, 2017, 49(1): 93-104 | [28] | (Tong Fulin, Li Xinliang, Tang Zhigong. Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese)) | [29] | Steger JL, Warming RF. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. Journal of Computational Physics, 1981, 40(2): 263-293 | [30] | Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, 126(1): 202-228 | [31] | Franke R. Scattered data interpolation: Tests of some methods. Mathematics of Computation, 1982, 38(157): 181-200 | [32] | Yang J, Liu Y, Lomax H. Computation of shock wave reflection by circular cylinders. AIAA Journal, 1987, 25(5): 683-689 | [33] | Giepman RHM, Schrijer FFJ, Van Oudheusden BW. Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size. Physics of Fluids, 2014, 26(6): 066101 | [34] | Igra D, Takayama K, Igra O. Shock wave reflection over roughened wedges// 30th International Symposium on Shock Waves, Cham: Springer, 2017: 621-625 | [35] | Fang J, Yao Y, Zheltovodov AA, et al.Investigation of three dimensional shock wave turbulent boundary layer interaction initiated by a single fin. AIAA Journal, 2016, 55(2): 509-523 | [36] | Bryson AE, Gross RWF. Diffraction of strong shocks by cones, cylinders, and spheres. Journal of Fluid Mechanics, 1961, 10(1): 1-16 | [37] | Kaca J. An interferometric investigation of the diffraction of a planar shock wave over a semicircular cylinder. NASA STI/Recon Technical Report N, 1988, 89 | [38] | Constantinescu G, Squires K. Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Physics of Fluids, 2004, 16(5): 1449-1466 | [39] | Rodriguez I, Borell R, Lehmkuhl O, et al.Direct numerical simulation of the flow over a sphere atRe = 3700. Journal of Fluid Mechanics, 2011, 679: 263-287 | [40] | 胡政敏, 肖志坚, 陶铸等. 基于LES 的亚临界和超临界圆球绕流数值研究. 水动力学研究与进展, 2016, 31(4): 496-502 | [40] | (Hu Zhengmin, Xiao Zhijian, Tao Zhu, et al.LES investigations of flow over a sphere in the subcritical and supercritical regimes. Chinese Journal of Hydrodynamics, 2016, 31(4): 496-502 (in Chinese)) | [41] | Von Terzi DA, Sandberg RD, Fasel HF. Identification of large coherent structures in supersonic axisymmetric wakes. Computers & Fluids, 2009, 38(8): 1638-1650 | [42] | Yun G, Kim D, Choi H. Vortical structures behind a sphere at subcritical Reynolds numbers. Physics of Fluids, 2006, 18(1): 015102 | [43] | 林孟达, 崔桂香, 张兆顺等. 飞机尾涡演变及快速预测的大涡模拟研究. 力学学报, 2017, 49(6): 1185-1200 | [43] | (Lin Mengda, Cui Guixiang, Zhang Zhaoshun, et al.Large eddy simulation on the evolution and the fast-time prediction of aircraft wake vortices. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1185-1200 (in Chinese)) | [44] | 及春宁, 花阳, 许栋等. 不同剪切率来流作用下柔性圆柱涡激振动数值模拟. 力学学报, 2018, 50(1): 21-31 | [44] | (Ji Chunning, Hua Yang, Xu Dong, et al.Numerical simulation of vortex-induced vibration of a flexible cylinder exposed to shear flow at different shear rates. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 21-31 (in Chinese)) | [45] | 任安禄, 李广望, 邹建锋. 中等雷诺数圆球绕流的数值研究. 浙江大学学报(工学版), 2004, 38(5): 644-648 | [45] | (Ren Anlu, Li Guangwang, Zou Jianfeng. Numerical study of uniform flow over sphere at intermediate Reynolds numbers. Journal of Zhejiang University (Engineering Science ), 2004, 38(5): 644-648 (in Chinese)) | [46] | 邹建锋, 任安禄, 邓见. 圆球绕流场的尾涡分析和升阻力研究. 空气动力学报. 2004, 22(3): 303-308 | [46] | (Zou Jianfeng, Ren Anlu, Deng Jian. Numerical investigations of wake and force for flow past a sphere. Acta Aerodynamica Sinica, 2004, 22(3): 303-308 (in Chinese)) | [47] | Achenbach E. Experiments on the flow past spheres at very high Reynolds numbers. Journal of Fluid Mechanics, 1972, 54(3): 565-575 |
|