EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热对流作用下筒壁涂层的边裂行为

彭中伏 陈学军

彭中伏, 陈学军. 热对流作用下筒壁涂层的边裂行为[J]. 力学学报, 2018, 50(2): 307-314. doi: 10.6052/0459-1879-17-412
引用本文: 彭中伏, 陈学军. 热对流作用下筒壁涂层的边裂行为[J]. 力学学报, 2018, 50(2): 307-314. doi: 10.6052/0459-1879-17-412
Peng Zhongfu, Chen Xuejun. EDGE CRACKING BEHAVIOR OF A COATED HOLLOW CYLINDER DUE TO THERMAL CONVECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 307-314. doi: 10.6052/0459-1879-17-412
Citation: Peng Zhongfu, Chen Xuejun. EDGE CRACKING BEHAVIOR OF A COATED HOLLOW CYLINDER DUE TO THERMAL CONVECTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 307-314. doi: 10.6052/0459-1879-17-412

热对流作用下筒壁涂层的边裂行为

doi: 10.6052/0459-1879-17-412
基金项目: 国家自然科学基金资助项目(51171026).
详细信息
    作者简介:

    null

    作者简介:陈学军,副教授,主要研究方向:涂层/薄膜力学. E-mail: chenxuejun@ustb.edu.cn

  • 中图分类号: O346.1;

EDGE CRACKING BEHAVIOR OF A COATED HOLLOW CYLINDER DUE TO THERMAL CONVECTION

  • 摘要: 边裂(边缘开裂)是涂层热致损伤的主要模式之一. 边缘裂纹穿透涂层后,常导致界面脱粘从而驱使涂层与基体剥离,最终丧失对基体的保护作用. 本文以热应力强度因子表征边缘裂纹的扩展驱动力,研究筒壁涂层在热对流作用下的边裂行为. 首先,利用拉普拉斯变换法,得到了瞬态温度场及热应力场的封闭解. 其次,运用Fett等的三参数法确定了筒壁涂层边缘裂纹的权函数. 最后,基于叠加原理和权函数方法计算了边缘裂纹的热应力强度因子. 探讨了无量纲时间、边缘裂纹深度、基体/涂层厚度比、热对流强度等参数对热应力强度因子的影响规律. 结果表明:热应力强度因子的峰值既非发生在热载荷初始时刻,也非发生在热稳态时刻,而出现在时间历程的中间时刻;增大热对流强度不仅可提高热应力强度因子的峰值,而且使峰值提前出现;其他条件相同时,热应力强度因子随着边缘裂纹长度的增大而降低;增大涂层厚度或减小基体厚度可增强涂层抵抗瞬态热载荷的能力.

     

  • [1] Hutchinson JW, Suo Z.Mixed mode cracking in layered materials.Advances in Applied Mechanics, 1991, 29: 63-191
    [2] Miller RA.Thermal barrier coatings for aircraft engines: History and directions.Journal of Thermal Spray Technology, 1997, 6(1): 35-42
    [3] Underwood JH, Park AP, Vigllante GN, et al.Thermal damage, cracking and rapid erosion of cannon bore coatings.Journal of Pressure Vessel Technology, 2003, 125(3): 299-304
    [4] 周益春,刘奇星,杨丽等.热障涂层的破坏机理与寿命预测.固体力学学报,2010, 31(5): 504-531
    [4] (Zhou Yichun, Liu Qixing, Yang Li, et al.Failure mechanisms and life prediction of thermal barrier coatings.Acta Mechanica Solida Sinica, 2010, 31(5): 504-531 (in Chinese))
    [5] 徐颖强, 孙戬, 李万钟等. 基于圆筒模型的热障涂层安定分析. 力学学报, 2015, 47(5): 779-788
    [5] (Xu Yinqiang, Sun Jian, Li Wangzhong, et al.Shakedown analysis of thermal barrier coatings based on cylinder model.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 779-788 (in Chinese))
    [6] Li HX, Chen GN, Zhang K, et al.Degradation failure features of chromium-plated gun barrels with a laser-discrete-quenched substrate.Surface and Coatings Technology, 2007, 201(24): 9558-9564
    [7] Li DJ, Tan M, Liu GQ, et al.Preparation and characterization of ZrB/AlN multilayers by N+ beam assisted deposition.Surface and Coatings Technology, 2011, 205(13-14): 3791-3797
    [8] Chen XG, Yang Y, Yan DR, et al.Microstructure and properties of in situ nanostructured ceramic matrix composite coating prepared by plasma spraying.Journal of Materials Science, 2011, 46(23): 7369-7376
    [9] 龚伟,周黎明,王恩泽等. Q235钢基体表面微晶玻璃功能梯度涂层接触应力的数值模拟.中国表面工程, 2014, 27(2): 46-51
    [9] (Gong Wei, Zhou Liming, Wang Enze, et al.Numerical simulation of the contact stress of functionally gradient glass-ceramic coatings on Q235 Ssteel.China Surface Engineering, 2014, 27(2): 46-51 (in Chinese))
    [10] 陈光南. 材料力学性能的激光调控. 中国激光,2011, 38(6): 43-53
    [10] (Chen Guangnan.Regulation of the mechanical properties of materials by laser.Chinese Journal of Lasers, 2011, 38(6): 43-53 (in Chinese))
    [11] Chen XJ, Yan Q, Ma Q.Influence of the laser pre-quenched substrate on an electroplated chromium coating/steel substrate.Applied Surface Science, 2017, 405: 273-279
    [12] Rizk AA.Stress intensity factor for an edge crack in two bonded dissimilar materials under convective cooling.Theoretical and Applied Fracture Mechanics, 2008, 49(3): 251-267
    [13] Zhou B, Kokini K.Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock.Acta Materialia, 2004, 52(14): 4189-4197
    [14] 李俊, 冯伟哲, 高效伟. 一种基于直接计算高阶奇异积分的断裂力学双边界积分方程分析法. 力学学报, 2016, 48(2): 387-398
    [14] (Li Jun, Feng Weizhe, Gao Xiaowei.A dual boundary integral equation method based on direct evaluation of higher order singular integral for crack problems.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 387-398 (in Chinese))
    [15] Shen G, Glinka G.Determination of weight functions from reference stress intensity factors.Theoretical and Applied Fracture Mechanics, 1991, 15(3): 237-245
    [16] Fett T.Direct determination of weight functions from reference loading cases and geometrical conditions.Engineering Fracture Mechanics, 1992, 42(3): 435-444
    [17] Wu XR, Xu W.Strip yield crack analysis for multiple site damage in infinite and finite panels - A weight function approach.Engineering Fracture Mechanics, 2011, 78(14): 2585-2596
    [18] Chen XJ, You Y.Weight functions for multiple edge cracks in a coating.Engineering Fracture Mechanics, 2014, 116: 31-40
    [19] 童第华, 吴学仁, 胡本润等. 半无限板边缘裂纹的权函数解法与评价. 力学学报, 2017, 49(4): 848-857
    [19] (Tong Dihua, Wu Xueren, Hu Benrun, et al.Weight function methods and assessment for an edge crack in a semi-infinite plate.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 848-857 (in Chinese))
    [20] Jin XC, Zeng YJ, Ding SD, et al.Weight function of stress intensity factor for single radial crack emanating from hollow cylinder.Engineering Fracture Mechanics, 2017, 170: 77-86
    [21] Fett T, Diegele E, Munz D, et al.Weight functions for edge cracks in thin surface layers.International Journal of Fracture, 1996, 81(??): 205-215
    [22] Fett T, Munz D, Yang YY.Direct adjustment procedure for weight functions of graded materials.Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(3): 191-198
    [23] Carslaw HS, Jaeger JC.Conduction of Heat in Solids. 2nd Ed. London: Oxford University Press, 1986
    [24] 谈庆明.量纲分析. 第1版. 合肥: 中国科学技术大学出版社, 2005
    [24] (Tan Qingming. Dimensional Analysis .1st Ed.Hefei: Press of University of Science and Technology of China, 2005 (in Chinese))
    [25] Boley BA, Weiner JH.Theory of Thermal Stresses. 1st Ed. New York:Dover Pulilication Inc., 2011
    [26] Bueckner HF.A novel principle for the computation of stress intensity factors. Zeitschrift für Angewandte Mathematik und Mechanik, 1970, 50(1): 529-546
    [27] Rice JR.Some remarks on elastic crack-tip stress fields. InternationalJournal of Solids and Structures, 1972, 8(6): 751-758
    [28] Wang BL, Mai YW, Zhang XH.Thermal shock resistance of functionally graded materials.Acta Materialia, 2004, 52(17): 4961-4972
    [29] ANSYS Release 11.0, ANSYS Inc., Canonsburg, Release 11.0, ANSYS Inc., Canonsburg, PA, 2009
    [30] Chen XJ, You Y.Weight functions for multiple axial cracks in a coated hollow cylinder.Archive of Applied Mechanics, 2015, 85(5): 617-628
  • 加载中
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  133
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-11
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回