EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种近场动力学非普通状态理论零能模式控制方法

李潘 郝志明 甄文强

李潘, 郝志明, 甄文强. 一种近场动力学非普通状态理论零能模式控制方法[J]. 力学学报, 2018, 50(2): 329-338. doi: 10.6052/0459-1879-17-386
引用本文: 李潘, 郝志明, 甄文强. 一种近场动力学非普通状态理论零能模式控制方法[J]. 力学学报, 2018, 50(2): 329-338. doi: 10.6052/0459-1879-17-386
Li Pan, Hao Zhiming, Zhen Wenqiang. A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 329-338. doi: 10.6052/0459-1879-17-386
Citation: Li Pan, Hao Zhiming, Zhen Wenqiang. A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 329-338. doi: 10.6052/0459-1879-17-386

一种近场动力学非普通状态理论零能模式控制方法

doi: 10.6052/0459-1879-17-386
基金项目: 国家自然科学基金项目(11472257, 11672278)和中国工程物理研究院重点学科项目(计算固体力学)资助.
详细信息
    作者简介:

    *通讯作者:郝志明, 研究员, 主要研究方向: 计算固体力学. E-mail:haozm@caep.cn

    通讯作者:

    郝志明

  • 中图分类号: O34;

A ZERO-ENERGY MODE CONTROL METHOD OF NON-ORDINARY STATE-BASED PERIDYNAMICS

  • 摘要: 近场动力学非普通状态理论在采用节点积分时将引起零能模式,造成位移场、应力应变场的数值不稳定性,影响计算精度甚至会导致完全错误的结果,因此必须对其进行控制.目前国际上还没有十分有效的零能模式控制方法.本文针对零能模式问题,提出了一种通用的、高效的控制方法.根据近场动力学线性键理论,确定非均匀变形对应弹性张量的具体形式,考虑了微模量随不同作用键的变化.通过最小位能原理推导出非均匀变形引起的力状态,结合近场动力学力状态,得到稳定力状态表达式.从而建立起基于线性键理论的稳定关联材料模型,并应用于含圆孔平板、三点弯试件线弹性变形和损伤破坏过程模拟.数值结果表明,本文模型能有效抑制近场动力学非普通状态理论中的零能模式现象.与已有零能模式控制方法相比,其物理意义明确,不包含控制参数,避免了复杂的零能模式参数调节过程,提高了计算效率.

     

  • [1] 黄丹, 章青, 乔丕忠等. 近场动力学方法以及应用. 力学进展, 2010, 40(4): 448-459
    [1] (Huang Dan, Zhang Qing, Qiao Peizhong, et al.A review on peridynamics method and its applications.Advances in Mechanics, 2010, 40(4): 448-459 (in Chinese))
    [2] Madenci E, Oterkus E.Peridynamic theory and its applications. New York: Springer Science and Business Media, 2014
    [3] 张军, 贾宏. 内聚力模型的形状对胶接结构断裂过程的影响. 力学学报, 2016, 49(5): 1088-1095
    [3] (Zhang Jun, Jia Hong.Influence of cohesive models shape on adhesively bonded joints.Chinese Journal of Theoretical and Applied Mechanics, 2016, 49(45): 1088-1095 (in Chinese))
    [4] 章鹏, 杜成斌, 江守燕. 比例边界有限元法求解裂纹面接触问题. 力学学报, 2017, 49(6): 1335-1347
    [4] (Zhang Peng, Du Chengbin, Jiang Shouyan.Crack face contact problem analysis using the scaled boundary finite element method.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1335-1347 (in Chinese))
    [5] 何超, 周顺华, 狄宏规等. 饱和土-隧道动力响应的2.5维有限元-边界元耦合模型. 力学学报, 2017, 49(1): 126-136
    [5] (He Chao, Zhou Shunhua, Di Honggui, et al.A 2.5-D coupled FE-BE model for the dynamic interaction between tunnel and saturated soil.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 126-136 (in Chinese))
    [6] Lehoucq RB, Silling SA.Force flux and the peridynamic stress tensor.Journal of the Mechanics and Physics of Solids, 2008, 56(4): 1566-1577
    [7] Weckner O, Brunk G, Epton MA, et al.Comparison between local elasticity and non-local peridynamics. Sandia National Laboratory Report, SAND2009-1109J, Albuquerque, New Mexico, 2009
    [8] Gerstle W, Sau N, Silling SA.Peridynamic modeling of concrete structures.Nuclear Engineering and Design, 2007, 237(12-13): 1250-1258
    [9] Kilic B, Agwai A, Madenci E.Peridynamic theory for progressive damage prediction in center-cracked composite laminates.Composite Structures, 2009, 90(2): 141-151
    [10] Silling SA, Askari E.A meshfree method on the peridynamic model of solid mechanics.Computers and Structures, 2005, 83: 1526-1535
    [11] 谷新保, 周小平. 含圆孔拉伸板的近场动力学数值模拟. 固体力学学报, 2015, 36(5): 376-383
    [11] (Gu Xinbao, Zhou Xiaoping.The numerical simulation of tensile plate with circular hole using peridynamic theory.Chinese Journal of Solid Mechanics, 2015, 36(5): 376-383 (in Chinese))
    [12] 刘肃肃, 余音. 复材非线性及渐进损伤的态型近场动力学模拟. 浙江大学学报, 2016, 50(5): 993-1000
    [12] (Liu Susu, Yu Yin.State-based peridynamic modeling of nonlinear behavior and progressive damage of composites.Journal of Zhejiang University, 2016, 50(5): 993-1000 (in Chinese))
    [13] Foster JT, Silling SA, Chen WW.Viscoplasticity using peridynamics.Int J Numer Meth Engng, 2010, 81: 1242-1258
    [14] Tupek MR, Rimoli JJ, Radovitzky R.An approach for incorporating classical continuum damage models in state-based peridynamics.Comput Methods Appl Mech Engrg, 2013, 263: 20-26
    [15] Ganzenmuller GC, Hiermaier S, May M.On the similarity of meshless discretizations of peridynamics and smooth-particle hydrodynamics.Computers & Structures, 2015, 150: 71-78
    [16] Beissel S, Belytschko T.Nodal integration of the element-free Galerkin method.Comput Methods Appl Mech Engrg, 1996, 139: 49-74
    [17] Duan QL, Li XK, Zhang HW, et al. Quadratically consistent one-point (QC1) quadrature for meshfree Galerkin methods. Comput Methods Appl Mech Engrg, 2012, 245-246: 256-272
    [18] 邵玉龙, 段庆林, 高欣等. 自适应一致性高阶无单元伽辽金法. 力学学报, 2017, 49(1): 105-116
    [18] (Shao Yulong, Duan Qinglin, Gao Xin, et al.Adaptive consistent high order element-free Galerkin method.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 105-116 (in Chinese))
    [19] 杨建军, 郑健龙. 无网格局部强弱法求解不规则域问题. 力学学报, 2017, 49(3): 659-666
    [19] (Yang Jianjun, Zheng Jianlong.Meshless local strong weak (MLSW) method for irregular domain problems.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 659-666 (in Chinese))
    [20] Breitenfeld MS, Geubelle PH, Weckner O, et al.Non-ordinary state-based peridynamic analysis of stationary crack problems.Comput Methods Appl Mech Engrg, 2014, 272: 233-250
    [21] Breitenfeld MS.Quasi-static non-ordinary state-based peridynamics for the modeling of 3D fracture. [PHD Thesis]. University of Illinois at Urbana-Champaign, 2014
    [22] Wu CT, Ren B.A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal maching process.Comput Methods Appl Meth Engrg, 2015, 291: 197-215
    [23] Becker R, Lucas RL.An assessment of peridynamics for pre and post failure deformation. No. ARL-TR-5811. Army Research Lab Aberdeen Proving Ground MD Weapons and Materials Research Directorate, 2011
    [24] Yaghoobi A, Chorzepa MG.Higher-order approximation to suppress the zero-energy mode in non-ordinary state-based peridynamics.Computers and Structures, 2017, 188: 63-79
    [25] Silling SA.Stability of peridynamic correspondence material models and their particle discretization.Comput Methods Appl Mech Engrg, 2017, 322: 42-57
    [26] Ren B, Fan H, Bergel GL, et al.A peridynamics-SPH coupling approach to simulate soil fragmentation induced by shock waves.Comput Mech, 2015, 55: 287-302
    [27] Tupek MR, Rimoli JJ, Radovitzky R.An approach for incorporating classical continuum damage models in state-based peridynamics.Comput Methods Appl Mech Engrg, 2013, 263: 20-26
    [28] Silling SA, Epton M, Wechner O, et al.Peridynamic states and constitutive modeling.Journal of Elasticity, 2007, 88(2): 151-184
    [29] Yaghoobi A, Chorzepa MG, Kim SS, et al.Mesoscale fracture analysis of multiphase cementitious composites using peridynamics.Materials, 2017, 10(2):162
    [30] Ouchi H.Development of peridynamics-based hydraulic model for fracture growth in heterogeneous reservoirs. [PhD Thesis]. Austin: The University of Texas, 2016
    [31] Huang D, Lu GD, Qiao PZ. An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. International Journal of Mechanical Sciences, 2015, 94-95: 111-122
    [32] Zhou XP, Wang YT, Xu XM.Numerical simulation of initiation, propagation and coalescence of cracks using the non-ordinary state-based peridynamics.Int J Fract, 2016, 201: 213-234
    [33] Yaghoobi A, Chorzepa MG.Meshless modeling framework for fiber reinforced concrete structures.Computers and Structures, 2015, 161: 43-54
    [34] Silling SA.Reformulation of elasticity theory for discontinuities and long-range forces.Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209
    [35] Macek RW, Silling SA.Peridynamics via finite element analysis.Finite Elements in Analysis and Design, 2007, 43: 1169-1178
    [36] Liu C, Cady CM, Rae PJ, et al. On the quantitative measurement of fracture toughness in high explosive and mock materials. No.LA-UR-10-01480, LA-UR-10-1480. Los Alamos National Laboratory (LANL), 2010
  • 加载中
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  139
  • PDF下载量:  481
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-20
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回