EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种力-电协同驱动的细胞微流控培养腔理论模型

王兆伟 武晓刚 陈魁俊 薛雅楠 王宁宁 赵腾 于纬伦 王艳芹 陈维毅

王兆伟, 武晓刚, 陈魁俊, 薛雅楠, 王宁宁, 赵腾, 于纬伦, 王艳芹, 陈维毅. 一种力-电协同驱动的细胞微流控培养腔理论模型[J]. 力学学报, 2018, 50(1): 124-137. doi: 10.6052/0459-1879-17-317
引用本文: 王兆伟, 武晓刚, 陈魁俊, 薛雅楠, 王宁宁, 赵腾, 于纬伦, 王艳芹, 陈维毅. 一种力-电协同驱动的细胞微流控培养腔理论模型[J]. 力学学报, 2018, 50(1): 124-137. doi: 10.6052/0459-1879-17-317
Wang Zhaowei, Wu Xiaogang, Chen Kuijun, Xue Yanan, Wang Ningning, Zhao Teng, Yu Weilun, Wang Yanqin, Chen Weiyi. A THEORETICAL MICROFLUIDIC FLOW MODEL FOR THE CELL CULTURE CHAMBER UNDER THE PRESSURE GRADIENT AND ELECTRIC FIELD DRIVEN LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 124-137. doi: 10.6052/0459-1879-17-317
Citation: Wang Zhaowei, Wu Xiaogang, Chen Kuijun, Xue Yanan, Wang Ningning, Zhao Teng, Yu Weilun, Wang Yanqin, Chen Weiyi. A THEORETICAL MICROFLUIDIC FLOW MODEL FOR THE CELL CULTURE CHAMBER UNDER THE PRESSURE GRADIENT AND ELECTRIC FIELD DRIVEN LOADS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 124-137. doi: 10.6052/0459-1879-17-317

一种力-电协同驱动的细胞微流控培养腔理论模型

doi: 10.6052/0459-1879-17-317
基金项目: 国家自然科学基金(11632013,11702183,11472185)、山西自然科学基金(2016021145)、山西省高等学校创新人才支持计划资助项目(143230146-S)、山西省高等学校科技创新项目(No. 2017135)和大连理工大学精细化工国家重点实验室开放课题基金项目(KF1511)
详细信息
    作者简介:

    *通讯作者:武晓刚,副教授,主要研究方向:生物力学. Email: wuxiaogangtyut@163.com

    通讯作者:

    武晓刚

  • 中图分类号: R318.01;

A THEORETICAL MICROFLUIDIC FLOW MODEL FOR THE CELL CULTURE CHAMBER UNDER THE PRESSURE GRADIENT AND ELECTRIC FIELD DRIVEN LOADS

  • 摘要: 细胞培养液在微流控生物反应器中受到外界物理场(如压力梯度或者电场)作用流动而产生流体剪应力,并进一步刺激种子细胞调控其内部基因的表达,从而促进细胞的分化和生长,这个过程在自然生命组织内的微管中亦是如此。考虑到细胞培养微腔隙中液体流动行为很难实验量化测定,理论建模分析是目前可行的研究手段。因此建立了矩形截面的细胞微流控培养腔理论模型,将外部的物理驱动场(压力梯度与电场)与培养腔内液体的流速、切应力和流率联系起来,分别得到了压力梯度驱动(Pressure gradient driven,PGD)、电场驱动(Electric field driven,EFD)及力-电协同驱动(Pressure-electricity synergic driven,P-ESD)三种驱动方式下的液体流动理论模型。结果表明该理论模型与现有的实验结果基本一致,具体地:力-电协同作用下的解答为压力梯度驱动和电场驱动结果的叠加。细胞培养腔内的流体流速、剪应力及流率幅值均正比于外部物理场强幅值,但随着压力梯度驱动载荷频率的增大而减小,随着电场驱动频率的变化不明显。在压力梯度驱动作用下,细胞贴壁处的切应力随着腔高的增大而线性增大,流率则随着腔高的增大而非线性增大,而电场驱动下的结果不受腔高的影响。生理范围内的温度场变化对压力和电场驱动的结果影响不大。另外,在引起细胞响应的流体切应力水平,电场驱动能提供较大的切应力幅值而压力梯度驱动则能提供较大的流率幅值。该理论模型的建立为细胞微流控生物反应器实验系统的设计及参数优化提供理论参考,同时也为力-电刺激细胞生长、分化机理的研究的提供基础。

     

  • 1 黄艳,樊瑜波. 力学因素影响骨髓间充质干细胞活性的研究进展. 生物医学工程学杂志, 2010, (4): 920-923
    1 (Huang Yan, Fan Yubo.Research Advances in Effects of Mechanical Stimulation on Bone Marrow Mesenchymal Stem Cells.Journal of Biomedical Engineering, 2010, (4): 920-923(in Chinese))
    2 李志勇,齐颖新,王建山,等. 第二届全国生物力学青年学者学术研讨会报告综述. 力学学报, 2016, 48(6): 1446-1451
    2 (Li Zhiyong, Qi Yingxin, Wang Jianshan, et al.Summary of the second national symposium on biomechanics for young scholars.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1446-1451(in Chinese))
    3 李德强,杨爱玲,汤亭亭,等. 灌注式生物反应器中流体剪切力对大段组织工程化骨构建的作用. 医用生物力学, 2009, 24(1): 8-14
    3 (Li Deqiang, Yang Ailing, Tang Tingting, et al.Study on the effects of flow shear stress in constructing large-scale Tissue-engineered bone using a perfusion bioreactor.Journal of Medical Biomechanics, 2009, 24(1): 8-14(in Chinese))
    4 Clark CC, Wang W, Brighton CT.Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields.Journal of Orthopaedic Research, 2014, 32(7): 894
    5 Gao Xinghua, Zhang Xu, Xu Hui, et al.Regulation of cell migration and osteogenic differentiation in mesenchymal stem cells under extremely low fluidic shear stress.Biomicrofluidics, 2014, 8(5): 41-49
    6 Stavenschi E, Labour MN, Hoey AD.Oscillatory fluid flow induces the osteogenic lineage commitment of Mesenchymal Stem Cells: The effect of shear stress magnitude, frequency, and duration.Journal of Biomechanics, 2017
    7 Zheng W, Xie Y, Zhang W, et al.Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study.Integrative Biology Quantitative Biosciences from Nano to Macro, 2012, 4(9): 1102
    8 Chang Long, Jian Yongjun, Buren Mandula, et al.Electroosmotic flow through a microtube with sinusoidal roughness.Journal of Molecular Liquids, 2016, 220(3): 258-264
    9 Ganguly S, Sarkar S, Hota TK, et al.Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field.Chemical Engineering Science, 2015, 126(4): 10-21
    10 Movahed S, Kamali R, Khosravifard A.Analytical study of mixed electroosmotic- pressure-driven flow in rectangular micro-channels.Theoretical & Computational Fluid Dynamics, 2013, 27(5): 599-616
    11 Pappas D.Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.Analyst, 2016, 141(2): 525
    12 Uzel SG, Amadi OC, Pearl TM, et al.Microfluidics: Simultaneous or Sequential Orthogonal Gradient Formation in a 3D Cell Culture Microfluidic Platform.Small, 2016, 12(5): 688
    13 Sun Y, Lim CS, Liu AQ, et al.Design, simulation and experiment of electroosmotic microfluidic chip for cell sorting.Sensors & Actuators A Physical, 2007, 133(2): 340-348
    14 Vaughan TJ, Mullen CA, Verbruggen SW, et al.Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia.Biomechanics and Modeling in Mechanobiology, 2015, 14(4): 703-718
    15 Becquart P, Cruel M, Hoc T, et al.Human mesenchymal stem cell responses to hydrostatic pressure and shear stress.European Cells & Materials, 2016, 31: 160
    16 Zhang H, Kay A, Forsyth NR, et al.Gene expression of single human mesenchymal stem cell in response to fluid shear.Journal of Tissue Engineering, 2012, 3(1): 2041731412451988
    17 Glawdel T, Ren CL.Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips.Mechanics Research Communications, 2009, 36(1): 75-81
    18 王淞,王海燕,杜娟,等. 生物电场对表皮干细胞增殖及迁移的影响. 中华创伤杂志, 2015, 31(3): 249-253
    18 (Wang Song, Wang Haiyan, Du Juan, et al.Effect of electric fields on proliferation and migration of epidermal stem cells.Chin J Trauma, 2015, 31(3): 249-253(in Chinese))
    19 Kumar A, Nune KC, Misra RD.Electric field-mediated growth of osteoblasts - the significant impact of dynamic flow of medium.Biomaterials Science, 2015, 4(1): 136-144.
    20 赵斌. 理想流体近似的讨论. 物理通报, 2016, 35(1): 123-124
    20 (Zhao Bin.Discussion on Ideal Fluid Approximation.Physics Bulletin, 2016, 35(1): 123-124(in Chinese))
    21 张培杰,林建忠. 非牛顿流体固粒悬浮流的若干问题. 力学学报, 2017, 49(3): 543-549
    21 (Zhang Peijie, Lin Jianzhong.Review of some researches on suspension of solid particle in non-Newtonian fluid.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 543-549(in Chinese))
    22 刘永,茹强喜. 一类象函数求拉氏逆变换的高效算法. 中国西部科技, 2010, 09(13): 26-27
    22 (Liu Yong, Ru qiangxi.An Improved Method of Laplace Inverse Transform for a Class of Image Functions.Science and Technology of West China, 2010, 09(13): 26-27(in Chinese))
    23 刘全生,杨联贵,苏洁. 微平行管道内Jeffrey流体的非定常电渗流动. 物理学报, 2013, 62(14): 301-306
    23 (Liu Quansheng, Yang Liangui,Su Jie.Transient electroosmotic flow of general Jeffrey fluid between two micro-parallel plates.Acta Physica Sinica, 2013, 62(14): 301-306(in Chinese))
    24 Li Dongqing.Electrokinetics in microfluidics.Elsevier Academic Press, 2004
    25 Arulanandam S, Li DQ.Liquid transport in rectangular microchannels by electroosmotic pumping.Colloids & Surfaces A Physicochemical & Engineering Aspects, 2000, 161(1): 89-102
    26 申力,李鸣,杨大勇. 基于PNP模型微通道内幂律流体电渗流数值模拟. 微纳电子技术, 2015, 52(9): 570-575
    26 (Shen Li, Li Ming, Yang Dayong.Numerical Simulation of the Electroosmotic Flow of Power-Law Fluids in Microchannels Based on the PNP Model.Micronanoelectronic Technology, 2015, 52(9): 570-575(in Chinese))
    27 . International Association for the Properties of Water and Steam. Release on the IAPWS formulation 2008 for the viscosity of ordinary water substance. Available at Release on the IAPWS formulation 2008 for the viscosity of ordinary water substance. Available at , September 2008
    28 Huang C, Ogawa R.Mechanotransduction in bone repair and regeneration.Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2010, 24(10): 3625
    29 Du D, Furukawa KT.Oscillatory perfusion culture of CaP-based tissue engineering bone with and without dexamethasone.Annals of Biomedical Engineering, 2009, 37(1): 146-155
    30 Grayson WL, Marolt D, Bhumiratana S, et al.Optimizing the medium perfusion rate in bone tissue engineering bioreactors.Biotechnology & Bioengineering, 2011, 108(5): 1159-1170
    31 Hambli R, Kourta A.A theory for internal bone remodeling based on interstitial fluid velocity stimulus function.Applied Mathematical Modelling, 2015, 39(12): 3525-3534
    32 Song H, Wang Y, Pant K.Scaling law for cross-stream diffusion in microchannels under combined electroosmotic and pressure driven flow.Microfluidics & Nanofluidics, 2013, 14(1-2): 371-382
    33 Bera S, Bhattacharyya S.On mixed electroosmotic-pressure driven flow and mass transport in microchannels.International Journal of Engineering Science, 2013, 62: 165-176
    34 武晓刚,于纬伦,王兆伟,等. 一种骨小管中液体流动产生的流量及切应力模型. 力学学报, 2016, 48(5): 1208-1216
    34 (Wu Xiaogang, Yu Weilun, Wang Zhaowei, et al.A canalicular fluid flow model associated with its fluid flow rate and fluid shear stress.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1208-1216(in Chinese))
    35 陈宗正,覃开蓉,高争鸣,等. 用于分析剪切力和生化因子对细胞联合作用的微流控装置. 水动力学研究与进展, 2015, 30(6): 643-649
    35 (Chen Zongzheng, Qin Kairong, Gao Zhengming, et al.A microfluidic device for analyzing cellular behavior in response to shear stress and biochemical factors.Chinese Journal of Hydrodynamics, 2015, 30(6): 643-649(in Chinese))
    36 Vaughan TJ, Haugh MG, Mcnamara LM.A fluid-structure interaction model to characterize bone cell stimulation in parallel-plate flow chamber systems.Journal of the Royal Society Interface, 2013, 10(81): 20120900
    37 Tanaka SM, Tachibana K.Frequency-Dependence of Mechanically Stimulated Osteoblastic Calcification in Tissue-Engineered Bone In Vitro.Annals of Biomedical Engineering, 2015, 43(9): 1-7
    38 Stolzing A, Scutt A.Effect of reduced culture temperature on antioxidant defences of mesenchymal stem cells. Free Radical Biology & Medicine, 2006, 41(2): 326-38
    39 Gagnon ZR, Chang HC.Electrothermal ac electro-osmosis. Applied Physics Letters, 2009, 94(2): 580
    40 Boy DA, Storey BD.Electrohydrodynamic instabilities in microchannels with time periodic forcing.Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007, 76: 026-304
    41 毕颖楠,张惠静,管潇. 生理缓冲液应用于微流控芯片分析系统中的电学特性的研究. 重庆医学, 2006, 35(20): 1872-1874
    41 (Bi Yingnan, Zhang Huijing, Guan Xiao et al. Study on electrical property of biological buffers system in microfluidic-chip.Chongqing Medicine, 2006, 35(20): 1872-1874(in Chinese))
    42 杨劲松, 杨渊. 不同pH值的培养液对兔骨髓间充质干细胞体外培养的影响. 右江医学, 2004, 32(6):519-522
    42 (Yang jinsong, Yang Yuanet al. The influence of different pH level of DMEM on rabbit Bone Mesenchymal stem cells in vitro culture.Youjiang Medical Journal, 2004, 32(6):519-522(in Chinese))
    43 Lee GH, Hwang JD, Choi JY, et al.An acidic pH environment increases cell death and pro-inflammatory cytokine release in osteoblasts: the involvement of BAX inhibitor-1.International Journal of Biochemistry & Cell Biology, 2011, 43(9):1305-1317
    44 Macka M, Andersson AP, Haddad PR.Changes in Electrolyte pH Due to Electrolysis during Capillary Zone Electrophoresis.Analytical Chemistry, 1998, 70(70): 743-749
  • 加载中
计量
  • 文章访问数:  1221
  • HTML全文浏览量:  186
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-15
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回