EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速溢流冷却实验研究

苑朝凯 李进平 陈宏 姜宗林 俞鸿儒

苑朝凯, 李进平, 陈宏, 姜宗林, 俞鸿儒. 高超声速溢流冷却实验研究[J]. 力学学报, 2018, 50(1): 1-8. doi: 10.6052/0459-1879-17-289
引用本文: 苑朝凯, 李进平, 陈宏, 姜宗林, 俞鸿儒. 高超声速溢流冷却实验研究[J]. 力学学报, 2018, 50(1): 1-8. doi: 10.6052/0459-1879-17-289
Yuan Chaokai, Li Jinping, Chen Hong, Jiang Zonglin, Yu Hongru. EXPERIMENTAL STUDY OF HYPERSONIC OVERFLOW COOLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 1-8. doi: 10.6052/0459-1879-17-289
Citation: Yuan Chaokai, Li Jinping, Chen Hong, Jiang Zonglin, Yu Hongru. EXPERIMENTAL STUDY OF HYPERSONIC OVERFLOW COOLING[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 1-8. doi: 10.6052/0459-1879-17-289

高超声速溢流冷却实验研究

doi: 10.6052/0459-1879-17-289
基金项目: 国家自然科学基金资助项目(11602275, 11472280).
详细信息
    作者简介:

    苑朝凯,工程师,主要研究方向:高超声速热防护. E-mail: yuanck@imech.ac.cn

    通讯作者:

    苑朝凯

  • 中图分类号: V211.7;

EXPERIMENTAL STUDY OF HYPERSONIC OVERFLOW COOLING

  • 摘要: 高超声速溢流冷却是一种新型的飞行器热防护方法,基本思想为:在高热流区布置溢流孔,控制冷却液以溢流方式流出,之后通过飞行器表面摩阻作用展布为液膜,形成热缓冲层以降低飞行器表面热流. 目前,溢流冷却技术还处于探索阶段,实现工程应用前还需开展大量的实验验证和机理研究工作. 本文首次开展溢流冷却的实验研究工作,采用热流测量、液膜厚度测量及液膜流动特性观测技术,搭建了完善的溢流冷却风洞实验平台,对溢流冷却热防护性能和高超声速条件下液膜流动规律进行了初步研究. 研究表明:(1) 高超声速流场中通过溢流能够在飞行器表面形成液膜并有效隔离外部高温气流,可降低飞行器表面热流率;(2) 楔面上的液膜前缘流动是一个逐渐减速的过程,增加冷却液流量液膜厚度变化不明显,但液膜前缘运动速度增大;(3) 液膜层存在表面波,在时间和空间方向发生演化,导致液膜厚度的微弱扰动;(4) 液膜层存在横向展宽现象,即液膜层宽度大于溢流缝宽度. 原因是液膜层与流场边界层条件不匹配,存在压力梯度,迫使冷却液向低压区流动,从而展宽液膜层,并且流量越高,横向展宽现象越明显.

     

  • [1] 刘成, 叶正寅, 叶坤. 转捩位置对全动舵面热气动弹性的影响. 力学学报, 2017, 49(4): 802-810
    [1] Liu Cheng, Ye Zhengyin, Ye Kun.The effect of transiton location on aerothermoelasticity of a hypersonic all-movable centrol surface. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 802-810 (in Chinese)
    [2] Glass DE.Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles//15th AIAA Space Planes and Hypersonic Systems and Technologies Conference. 2008, 28: 1-36
    [3] Shen L, Wang JH, Dong WJ, et al.An experimental investigation on transpiration cooling with phase change under supersonic condition. Applied Thermal Engineering, 2016, 105: 549-556
    [4] Wang JH, Zhao LJ, Wang XC, et al.An experimental investigation on transpiration cooling of wedge shaped nose cone with liquid coolant. International Journal of Heat and Mass Transfer, 2014, 75: 442-449
    [5] Huang G, Zhu YH, Liao ZY, et al.Experimental investigation of transpiration cooling with phase change for sintered porous plates. International Journal of Heat and Mass Transfer, 2017, 114: 1201-1213
    [6] Barzegar Gerdroodbary M, Imani M, Ganji DD.Investigation of film cooling on nose cone by a forward facing array of micro-jets in Hypersonic flow. International Communications in Heat and Mass Transfer, 2015, 64: 42-49
    [7] Sriram R, Jagadeesh G.Film cooling at hypersonic Mach numbers using forward facing array of micro-jets. International Journal of Heat and Mass Transfer, 2009, 52(15): 3654-3664
    [8] Wang ZG, Sun XW, Huang W, et al.Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey. Acta Astronautica, 2016, 129: 95-110
    [9] 侯宜朋, 侯赤, 万小朋等. 对流式主动冷却结构影响参数分析. 固体火箭技术, 2016, 39(1): 90-94
    [9] Hou Yipeng, Hou Chi, Wan Xiaopeng, et al.Analysis of influence parameters to convection active cooling structure. Journal of Solid Rocket Technology, 2016, 39(1): 90-94 (in Chinese)
    [10] 孙健, 刘伟强. 翼前缘层板对流冷却结构的防热效果分析. 物理学报, 2012, 61(12): 379-386
    [10] Sun Jian, Liu Weiqiang.Research on convective cooling effect of leading edge platelet of airfoil. Acta Phys Sin, 2012, 61(12): 379-386 (in Chinese)
    [11] Anthony F, Dukes W, Helenbrook R.Data and results from a study of internal convective cooling systems for hypersonic aircraft, NASA CR-132432, 1974
    [12] Aso S, Hayashi K, Mizoguchi M.A study on aerodynamic heating reduction due to opposing jet in hypersonic flow. AIAA Paper, 2002, 646: 2002
    [13] Hayashi K, Aso S, Tani Y.Numerical study of thermal protection system by opposing jet//43rd Aiaa Aerospace Sciences Meeting and Exhibit, 2005: 2005-0188
    [14] 何琨, 陈坚强, 董维中. 逆向喷流流场模态分析及减阻特性研究. 力学学报, 2006, 38(4): 438-445
    [14] He Kun, Chen Jianqiang, Dong Weizhong.Penetration mode and drag reduction research in hypersonic flows using a counter-flow jet. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(4): 438-445 (in Chinese)
    [15] Fujita M.Axisymmetric oscillations of an opposing jet from a hemispherical nose. AIAA Journal, 2015, 33(33): 1850-1856
    [16] 耿云飞, 阎超. 高超声速自适应激波针数值研究. 力学学报, 2011, 43(3): 441-446
    [16] Geng Yunfei, Yan Chao.Numerical Investigation of self-aligning spiked bodies at hypersonic speeds. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 441-446 (in Chinese)
    [17] Ahmed MYM, Qin N.Recent advances in the aerothermodynamics of spiked hypersonic vehicles. Progress in Aerospace Sciences, 2011, 47(6): 425-449
    [18] Gauer M, Paull A.Numerical investigation of a spiked blunt nose cone at hypersonic speeds. Journal of Spacecraft & Rockets, 2015, 45(2008): 459-471
    [19] 张江, 吴军飞, 尼文斌等. 带喷流激波针流动特性实验研究. 力学学报, 2016, 48(5): 1040-1048
    [19] Zhang Jiang, Wu Junfei, Ni Wenbin, et al.Experimental investigation on flowfield around blunt body with forward-facing jet and spike. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1040-1048 (in Chinese)
    [20] Silton SI, Goldstein DB.Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow. Journal of Fluid Mechanics, 2005, 528: 297-321
    [21] Engblom WA, Goldstein DB.Nose-tip surface heat reduction mechanism. Journal of Thermophysics and Heat Transfer, 1996, 10(4): 598-606
    [22] Selvaraj S, Gopalan J, Reddy KPJ.Investigation of missile-shaped body with forward-facing cavity at Mach 8. Journal of Spacecraft and Rockets, 2009, 46(3): 577-591
    [23] 陈兵. 溢流降低前缘热流率研究. [博士论文]. 北京:中国科学院大学, 2013
    [23] Chen Bing.Investigation on reducing the heat flux at the leading edge by overflow cooling. [PhD Thesis]. Beijing: University of Chinese Academy of Sciences, 2013 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1724
  • HTML全文浏览量:  177
  • PDF下载量:  628
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-29
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回