EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进的双向渐进结构优化法的应力约束拓扑优化

王选 刘宏亮 龙凯 杨迪雄 胡平

王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. doi: 10.6052/0459-1879-17-286
引用本文: 王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. doi: 10.6052/0459-1879-17-286
Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. doi: 10.6052/0459-1879-17-286
Citation: Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. doi: 10.6052/0459-1879-17-286

基于改进的双向渐进结构优化法的应力约束拓扑优化

doi: 10.6052/0459-1879-17-286
基金项目: 国家自然科学基金(11272075, 11772079), 北京市自然科学基金(2182067)和中央高校基本科研业务费专项(2017MS077, 2018ZD09)资助项目.
详细信息
    作者简介:

    *通讯作者:杨迪雄,教授,主要研究方向:结构优化与建筑抗震减震. E-mail:yangdx@dlut.edu.cn

    通讯作者:

    杨迪雄

  • 中图分类号: O342,O346;

STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD

  • 摘要: 工程结构设计时经常需要限制最大名义应力,以避免发生断裂或疲劳破坏,一个有效的策略是采用拓扑优化方法. 常规的双向渐进结构优化法(bi-evolutionary structural optimization, BESO)不能有效求解应力约束拓扑优化问题,为此本文提出一种改进的双向渐进结构优化方法,处理体积和应力约束下的最小柔顺性问题. 引入基于K-S函数的全局应力度量,以减小大量局部应力约束引起的计算代价. 采用拉格朗日乘子法将应力约束函数引入到目标函数,然后由二分法确定合适的拉格朗日乘子的值使得应力约束得到满足. 而且,详细推导了基于BESO方法的应力约束拓扑优化模型及其灵敏度列式,最后通过三个典型拓扑优化算例验证改进方法的有效性. 为展示考虑应力约束的优点,将应力约束设计与传统的基于刚度的设计进行了比较. 结果表明, 改进的BESO方法优化迭代过程稳健,获得了边界灰度单元很少的清晰的拓扑构型,并实现了有效降低应力集中效应的设计.

     

  • [1] Bendsoe MP, Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering, 1988, 71(1): 197-224
    [2] Bendsoe MP, Sigmund O.Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003
    [3] Xie YM, Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures, 1993, 49(3): 885-896
    [4] 隋允康, 叶红玲, 彭细荣等. 连续体结构拓扑优化应力约束凝聚化的ICM 方法. 力学学报, 2007, 23(4): 554-563
    [4] (Sui Yunkang, Ye Hongliang, Peng Xirong, et al.The ICM method for continuum structural topology optimization with condensation of stress constraints.Chinese Journal of Theoretical Applied Mechanics, 2007, 23(4): 554-563 (in Chinese))
    [5] Wang MY, Wang X, Guo DM.A level set method for structural topology optimization.Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246
    [6] Guo X, Zhang WS, Zhong W.Doing topology optimization explicitly and geometrically—a new moving morphable components based framework.Journal of Applied Mechanics, 2014, 81(6): 081009
    [7] Sigmund O, Maute K.Topology optimization approaches.Structural and Multidisciplinary Optimization, 2013, 48(4): 1031-1055
    [8] 谢亿民, 黄晓东, 左志豪等. 渐进结构优化法 (ESO) 和双向渐进结构优化法 (BESO) 的近期发展. 力学进展, 2011, 41(4): 462-471
    [8] (Xie Yiming, Huang Xiaodong, Zuo Zhihao, et al.Recent developments of evolutionary structural optimization (ESO) and bidirectional evolutionary structural optimization (BESO) methods.Advances in Mechanics, 2011, 41(4): 462-471 (in Chinese))
    [9] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化. 航空学报, 2015, 36(6): 2662-2669
    [9] (Zhang Weihong, Guo Wenjie, Zhu Jihong.Integrated layout and topology optimization design of multi-component systems with assembly units.Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2662-2669 (in Chinese))
    [10] 龙凯, 王选, 韩丹. 基于多相材料的稳态热传导结构轻量化设计. 力学学报, 2017, 49(1): 359-366
    [10] (Long Kai, Wang Xuan, Han Dan.Structural light design for steady heat conduction using multi-material.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 359-366 (in Chinese))
    [11] 王选, 胡平, 祝雪峰等. 考虑结构自重的基于NURBS插值的3D拓扑描述函数法. 力学学报, 2016, 48(4): 1437-1445
    [11] (Wang Xuan, Hu Ping, Zhu Xuefeng, et al.Topology description function approach using NURBS interpolation for 3Dstructures with self-weight loads.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1437-1445 (in Chinese))
    [12] 隋允康, 彭细荣. 求解一类可分离凸规划的对偶显式模型DP-EM方法. 力学学报, 2017, 49(3):1135-1144
    [12] (Sui Yunkang, Peng Xirong.A dual explicit model based DPEM method for solving a class of separable convex programming.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 1135-1144 (in Chinese))
    [13] 陈文炯, 刘书田, 张永存. 基于拓扑优化的自发热体冷却用植入式导热路径设计方法. 力学学报, 2016, 48(1): 406-412
    [13] (Chen Wenjiong, Liu Shutian, Zhang Yongcun.Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 406-412 (in Chinese))
    [14] Guo X, Zhang WS, Zhang J, et al.Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons.Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711-748
    [15] Cheng GD, Jiang Z.Study on topology optimization with stress constraints.Engineering Optimization, 1992, 20(1): 129-148
    [16] Cheng GD, Guo X.ε-relaxed approach in structural topology optimization.Structural Optimization, 1997, 13(4): 258-266
    [17] Duysinx P, Bendsoe MP.Topology optimization of continuum structures with local stress constraints.International Journal for Numerical Methods in Engineering, 1998, 43(6): 1453-1478
    [18] Paris J, Navarrina F, Colominas I, et al.Topology optimization of continuum structures with local and global stress constraints.Structural and Multidisciplinary Optimization, 2009, 39(4): 419-437
    [19] Bruggi M, Venini P.A mixed FEM approach to stress-constrained topology optimization.International Journal for Numerical Methods in Engineering, 2008, 73(10): 1693-1714
    [20] Verbart A, Langelaar M, Van Keulen F.A unified aggregation and relaxation approach for stress-constrained topology optimization.Structural and Multidisciplinary Optimization, 2017, 55(1): 663-679
    [21] Holmberg E, Torstenfelt B, Klarbring A.Stress constrained topology optimization.Structural and Multidisciplinary Optimization, 2013, 48(1): 33-47
    [22] Rong JH, Xiao TT, Yu LH, et al.Continuum structural topological optimizations with stress constraints based on an active constraint technique.International Journal for Numerical Methods in Engineering, 2016, 108(4): 326-360
    [23] Le C, Norato J, Bruns T, et al.Stress-based topology optimization for continua.Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620
    [24] Yang RJ, Chen CJ.Stress-based topology optimization.Structural Optimization, 1996, 12(2-3): 98-105
    [25] Luo YJ, Kang Z.Topology optimization of continuum structures with Drucker-Prager yield stress constraints.Computers and Structures, 2012, 90: 65-75
    [26] Luo YJ, Wang MY, Kang Z.An enhanced aggregation method for topology optimization with local stress constraints.Computer Methods in Applied Mechanics and Engineering, 2013, 254: 31-41
    [27] Paris J, Navarrina F, Colominas I, et al.Block aggregation of stress constraints in topology optimization of structures.Advances in Engineering Software, 2010, 41(2): 433-441
    [28] Cai SY, Zhang WH.Stress constrained topology optimization with free-form design domains.Computer Methods in Applied Mechanics and Engineering, 2015, 289: 267-290
    [29] Wang MY, Li L.Shape equilibrium constraint: A strategy for stress-constrained structural topology optimization.Structural and Multidisciplinary Optimization, 2013, 47(2): 335-352
    [30] Zhou MD, Sigmund O.On fully stressed design and p-norm measures in structural optimization.Structural and Multidisciplinary Optimization, 2017, 56(2): 731-736
    [31] Guo X, Zhang WS, Zhong W.Stress-related topology optimization of continuum structures involving multi-phase materials.Computer Methods in Applied Mechanics and Engineering, 2014, 268: 632-655
    [32] Xia Q, Shi T, Liu S, et al.A level set solution to the stress-based structural shape and topology optimization.Computers and Structures, 2012, 90: 55-64
    [33] Guo X, Zhang WS, Wang MY, et al.Stress-related topology optimization via level set approach.Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3439-3452
    [34] Cai SY, Zhang WH, Zhu JH, et al.Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function.Computer Methods in Applied Mechanics and Engineering, 2014, 278: 361-387
    [35] 隋允康, 张学胜, 龙连春. 应力约束处理为应变能集成的连续体结构拓扑优化. 计算力学学报, 2007, 24(3): 602-608
    [35] (Sui Yunkang, Zhang Xuesheng, Long Lianchun.The ICM method of structural topology optimization with stress constraints approached by the integration of strain energies. Chinese Journal of Computational Mechanics, 2007, 24(3): 602-608 (in Chinese))
    [36] 隋允康, 边炳传. 屈曲与应力约束下连续体结构的拓扑优化. 工程力学, 2008, 25(6): 6-12
    [36] (Sui Yunkang, Bian Binchuan.Topology optimization of continuum structures under bucking and stress constraints.Engineering Mechanics, 2008, 25(6): 6-12 (in Chinese))
    [37] 隋允康,铁军.结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化. 工程力学, 2010, 27(增刊I): 224-237
    [37] (Sui Yunkang, Tie Jun.The ICM explicitation approach to structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function.Engineering Mechanics, 2010, 27(Sup. issue I): 224-237 (in Chinese))
    [38] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法. 北京:科学出版社, 2013
    [38] (Sui Yunkang, Ye Hongling.Continuum Topology Optimization Methods ICM. Beijing: Science Press, 2013 (in Chinese))
    [39] 荣见华, 葛森, 邓果等. 基于位移和应力灵敏度的结构拓扑优化设计. 力学学报, 2009, 41(4): 518-529
    [39] (Rong Jianhua, Ge Sen, Deng Guo, et al.Structural topology optimization based on displacement and stress sensitivity analysis.Chinese Journal of Theoretical Applied Mechanics, 2009, 41(4): 518-529 (in Chinese))
    [40] Munk DJ, Vio GA, Steven GP.Topology and shape optimization methods using evolutionary algorithms: A review.Structural and Multidisciplinary Optimization, 2015, 52(2): 613-631
    [41] Huang X, Xie YM.Evolutionary topology optimization of continuum structures with an additional displacement constraint.Structural and Multidisciplinary Optimization, 2010, 40(1): 409-416
    [42] Huang X, Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elements in Analysis and Design, 2007, 43(12): 1039-1049
    [43] Huang X, Li Y, Zhou SW, et al.Topology optimization of compliant mechanisms with desired structural stiffness.Engineering Structures, 2014, 79: 13-21
  • 加载中
计量
  • 文章访问数:  1553
  • HTML全文浏览量:  222
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-22
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回