EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙表面接触力学问题的重新分析

孙见君 嵇正波 马晨波

孙见君, 嵇正波, 马晨波. 粗糙表面接触力学问题的重新分析[J]. 力学学报, 2018, 50(1): 68-77. doi: 10.6052/0459-1879-17-272
引用本文: 孙见君, 嵇正波, 马晨波. 粗糙表面接触力学问题的重新分析[J]. 力学学报, 2018, 50(1): 68-77. doi: 10.6052/0459-1879-17-272
Sun Jianjun, Ji Zhengbo, Ma Chenbo. REANALYSIS OF THE CONTACT MECHANICS FOR ROUGH SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 68-77. doi: 10.6052/0459-1879-17-272
Citation: Sun Jianjun, Ji Zhengbo, Ma Chenbo. REANALYSIS OF THE CONTACT MECHANICS FOR ROUGH SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 68-77. doi: 10.6052/0459-1879-17-272

粗糙表面接触力学问题的重新分析

doi: 10.6052/0459-1879-17-272
基金项目: 国家自然科学基金 (51375245,51505230) 和博士后基金 (2017M611822) 资助项目.
详细信息
    作者简介:

    *通讯作者:孙见君,教授,主要研究方向:摩擦学、流体密封理论与技术. E-mail: sunjianjun@njfu.edu.cn

    通讯作者:

    孙见君

  • 中图分类号: TH113;

REANALYSIS OF THE CONTACT MECHANICS FOR ROUGH SURFACES

  • 摘要: 为了克服基于统计学参数的接触模型的尺度依赖性以及现有接触分形模型推导过程中初始轮廓表征受控于接触面积或取样长度的不足,基于粗糙表面轮廓分形维数$D$、尺度系数$G$ 和最大微凸体轮廓基底尺寸$l$,建立了新的粗糙表面接触分形模型,探讨了微凸体变形机制、粗糙表面的真实接触面积和接触载荷的关系,揭示了接触界面的孔隙率和真实接触面积随端面形貌、表面接触压力等参数变化的规律,给出了不同形貌界面被压实的最大变形量. 结果表明:微凸体变形从弹性变形开始,并随着平均接触压力$p_{\rm m}$ 的增大逐步向弹塑性变形和完全塑性变形转变;接触界面的初始孔隙率$\phi_{0}$ 随$D$ 的增大而增大,压实孔隙所需要的最大变形量$\delta $ 也随之增大;接触压力$p_{\rm c}$ 增大,孔隙率$\phi$ 减小,并随着$D$ 的增大和$G$ 减小,$\phi$ 快速减小,直至填实,变为零;$D$ 较小时,$G$ 的增大对真实接触面积的增大影响较小;$D$ 较大时,$G$ 的增大对真实接触面积的增大作用明显. 研究成果为端面摩擦副的润滑与密封设计提供了理论基础.

     

  • [1] 吴承伟. 粗糙表面接触研究进展. 力学进展, 1991, 21(1): 96-108
    [1] Wu Chengwei. Research progress of rough-surface contact model.Advances in Mechanics, 1991, 21(1): 96-108 (in Chinese)
    [2] Hertz H. Über die Berührung fester elastischer Körperü. J. die reine und angewandte Mathematik,1882, 92: 156-171
    [3] Greenwood JA, Williamson JBP.Contact of nominally flat surfaces.Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1966, 295(295): 300-319
    [4] Whitehouse DJ, Archard JD.The properties of random surface of significance in their contact. Proc Roy Soc, London, A316, 1970: 97-121
    [5] Majumdar A, Bhushan B.Fractal model of elastic-plastic contact between rough surfaces.Journal of Tribology, 1991, 113(1): 1-11
    [6] 高志强, 傅卫平, 王雯等. 弹塑性微凸体侧向接触相互作用能耗. 力学学报, 2017, 49(4): 858-869
    [6] Gao Zhiqiang, Fu Weiping, Wang Wen, et al.Study on the contact energy dissipation of the lateral and interactional between the elastic-plastic asperities.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 858-869 (in Chinese)
    [7] Kim M, Lee SM, Lee DW, et al.Tribological effects of a rough surface bearing using an average flow analysis with a contact model of asperities.International Journal of Precision Engineering & Manufacturing, 2017,18(4):521-534
    [8] Zhai C, Hanaor D, Proust G, et al.Interfacial electro-mechanical behaviour at rough surfaces.Extreme Mechanics Letters, 2016, 9: 422-429
    [9] Ma D, Liu C.Contact law and coeffcient of restitution in elastoplastic spheres.Journal of Applied Mechanics, 2015,82(12):1-9
    [10] Ciavarella M.Rough contacts near full contact with a very simple asperity model.Tribology International, 2016,93(12):464-469
    [11] 王雯, 吴洁蓓, 傅卫平等. 机械结合面法向动态接触刚度理论模型与试验研究. 机械工程学报, 2016,52(3):123-130
    [11] Wang Wen, Wu Jiebei, Fu Weiping, et al.Theoretical and experimental research on normal dynamic contact stiffness of machined joint surfaces.Journal of Mechanical Engineering, 2016,52(3):123-130 (in Chinese)
    [12] 何联格, 左正兴, 向建华. 考虑微凸体弹塑性过渡变形机制的结合面法向接触刚度分形模型. 上海交通大学学报,2015,49(1): 116-121
    [12] He Liange, Zuo Zhengxing, Xiang Jianhua.Normal contact stiffness fractal model conseidering asperity elastic-plastic transitional deformation mechanism of joints. Journal of Shanghai Jiao Tong University, 2015, 49(1):116-121 (in Chinese)
    [13] 黄仕平, 吴杰, 胡俊亮等. 基于分子动力学 - 格林函数法的微凸体接触数值分析. 力学学报, 2017, 49(4): 961-967
    [13] Huang Shiping, Wu Jie, Hu Junliang, et al.Numerical analysis of asperity contact model based on molecular dynamics-Green’s function method.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 961-967 (in Chinese)
    [14] Greenwood JA, Tripp JH.The elastic contact of rough spheres.ASME Journal of Applied Mechanics, 1967, 34(1): 153-159
    [15] Bush AW, Gibson RD, Keogh GP.Strong anisotropic rough surface.ASME Journal of Tribology, 1979, 101: 15-20
    [16] Pullen J, Williamson JBP.On the plastic contact of rough surfaces.Proceedings of the Royal Society of London, 1972, 327(1569): 159-173
    [17] Chang WR, Etsion I, Bogy DB.An elastic-plastic model for the contact of rough surfaces.ASME Journal of Tribology, 1987, 109: 257-263
    [18] Zhao YW, Chang L.An model of asperity interactins in elastic-plastic contact of rough surfaces.ASME Journal of Tribology, 2001, 123: 857-864
    [19] Zhao YW, David DM, Chang L.An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow.ASME Journal of Tribology, 2000, 122: 86-93
    [20] Chung JC.Elastic-plastic contact analysis of an ellipsoid and a rigid flat.Tribology International, 2010, 43(1-2): 491-502
    [21] Wang S, Komvopoulosk K.A fractal theory of the interfacial temperature distribution in the slow sliding regime: Part I elastic contact and heat transfer analysis.ASME Journal of Tribology, 1994, 116(4): 812-823
    [22] 朱育权, 马保吉, 姜凌彦. 粗糙表面接触的弹性、弹塑性、塑性分形模型. 西安工业大学学报, 2001, 21(2): 150-157
    [22] Zhu Yuquan, Ma Baojie, Jiang Lingyan.The elastic elastoplastic and plastic fractal contact models for rough surface.Journal of Xi’an University of Technology, 2001, 21(2): 150-157 (in Chinese)
    [23] 田红亮, 余媛, 陈甜敏等. 考虑表面粗糙度和几何曲率的两球体接触问题. 西安交通大学学报, 2016, 50(3): 1-7
    [23] Tian Hongliang, Yu yuan, Chen Tianmin, et al. Contact problem between two spheres considering surface roughness and geometrical curvature.Journal of Xi’an Jiaotong University, 2016, 50(3): 1-7 (in Chinese)
    [24] 缪小梅, 黄筱调, 袁鸿. 考虑微凸体弹塑性变形的结合面分形接触模. 农业机械学报, 2013, 44(1): 248-252
    [24] Miao Xiaomei, Huang Xiaodiao,Yuan Hong.Fractal contact model of joint interfaces considering elastic-plastic deformation of asperities.Journal of Agricultural Machinery, 2013, 44(1): 248-252 (in Chinese)
    [25] Liu P, Zhao H, Huang K, et al.Research on normal contact stiffness of rough surface considering friction based on fractal theory.Applied Surface Science, 2015, 349: 43-48
    [26] Morag Y, Etsion I.Resolving the contradiction of asperities plastic to elastic mode transition in current contact models of fractal rough surfaces.Wear, 2007, 262(5/6): 624-629
    [27] Liou JL, Chi MT, Lin JF.A microcontact model developed for sphere- and cylinder-based fractal bodies in contact with a rigid flat surface.Wear, 2010, 268(3-4): 431-442
    [28] 成雨, 原园, 甘立等. 尺度相关的分形粗糙表面弹塑性接触力学模型. 西北工业大学学报, 2016, 34(3): 485-492
    [28] Cheng Yu, Yuan Yuan, Gan Li, et al.The elastic-plastic contact mechanics model related scale of rough surface.Journal of Northwestern Polytechnical University, 2016, 34(3): 485-492 (in Chinese)
    [29] 丁雪兴,严如奇,贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析. 摩擦学学报,2014, 34(7):341-347
    [29] Ding Xuexing, Yan Ruqi, Jia Yonglei.Construction and analysis of fractal contact mechanics model for rough surface based on base length.Journal of Tribology, 2014, 34(7): 341-347 (in Chinese)
    [30] Majumder A, Tien CL.Fractal characterization and simulation of rough surfaces.Wear, 1990, 136(2): 313-327
    [31] Hill R.The Mathematical Theory of Plasticity. London: Oxford University Press, 1950
    [32] Kucharski S, Klimczak T, Polijaniuk A, et al.Finite-elements model for the contact of rough surfaces.Wear, 1994, 177(1): 1-13
    [33] Yan W, Komvopoulos K.Contact analysis of elastic-plastic fractal surfaces.Journal of Applied Mechanics, 1998, 84(7): 3617-3624
    [34] Ghosh N, Sahoo P.Finite element contact analysis of fractal surfaces.Journal of Physics D Applied Physics, 2007, 40(14): 42-45
  • 加载中
计量
  • 文章访问数:  1381
  • HTML全文浏览量:  237
  • PDF下载量:  911
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-06
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回