EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属切屑塑性流动的稳定性

马维

马维. 金属切屑塑性流动的稳定性[J]. 力学学报, 2018, 50(1): 58-67. doi: 10.6052/0459-1879-17-270
引用本文: 马维. 金属切屑塑性流动的稳定性[J]. 力学学报, 2018, 50(1): 58-67. doi: 10.6052/0459-1879-17-270
Ma Wei. STABILITY OF PLASTIC FLOW OF METALLIC CHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 58-67. doi: 10.6052/0459-1879-17-270
Citation: Ma Wei. STABILITY OF PLASTIC FLOW OF METALLIC CHIPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 58-67. doi: 10.6052/0459-1879-17-270

金属切屑塑性流动的稳定性

doi: 10.6052/0459-1879-17-270
基金项目: 国家自然科学基金资助项目(11572337, 51575029, 11772346).
详细信息
    作者简介:

    *通讯作者:马维,副研究员,主要研究方向:材料动态力学性能,材料工艺力学. E-mail: watwm@imech.ac.cn, 13146247958@163.com

    通讯作者:

    马维

  • 中图分类号: TG506;

STABILITY OF PLASTIC FLOW OF METALLIC CHIPS

  • 摘要: 对金属正交切削过程中切屑形成机制和材料塑性流动行为进行实验研究和理论分析. 通过对4 种常用金属材料正交切削过程的实验研究和切屑形貌的微观观察,确定了连续切屑转变成锯齿切屑的临界速度. 结果表明该临界速度与材料性能相关. 在实验观察基础上,提出描述材料正交切削过程的二维分析模型. 该模型假设切屑形成区为包括主剪切区和次剪切区的一个平行四边形. 载荷有主剪切区中的剪应力和次剪切区中的正压力;通过量纲分析得到描述材料正交切削过程的无量纲主控参数和无量纲形式的基本控制方程;应用线性稳定性分析方法建立平面应变状态下评价材料塑性流动稳定性的普遍准则;求得切屑形成区内材料塑性变形的速度和应力近似解. 讨论切屑形成、形貌转变以及相关的塑性失稳机制. 分析结果表明, 表征材料惯性与阻尼之比的无量纲参数— 雷诺数可以作为主控参数描述金属切削过程以及切屑材料塑性流动的稳定性.

     

  • [1] Finnie I.Review of the metal-cutting analysis of the past hundred years.Mechanical Engineering, 1956,78: 715-721
    [2] Henkin A, Datsko J. The influence of physical properties on machinability.Trans ASME, 1963, 85: 321-328
    [3] Taylor FW. On the art of cutting metals. Transactions of the American Society of Mechanical Engineers, 1906, XXVIII: 31-350
    [4] Shaw MC. Metal Cutting Principles.Oxford: Clarendon Press, 1984
    [5] 钱学森. 论技术科学. 科学通报,1957, 8(3): 97-104
    [5] Tsien Hsue-Shen.Engineering and engineering science. Chinese Science Bulletin,1957, 8(3): 97-104 (in Chinese)
    [6] 郑哲敏. 学习钱学森先生技术科学思想的体会. 见:郑哲敏文集. 北京: 科学出版社, 2004,888-894
    [6] Cheng Che-Min.Learn the experience of Mr. Qian’s engineering scientific though. In: Cheng Che-Min Corpus. Beijing: Science Press, 2004, 888-894 (in Chinese)
    [7] Arrazola PJ, Ozel T, Umbrello D, et al.Recent advances in modelling of metal machining processes.CIRP Annals-Manufacturing Technology, 2013, 62: 695-718
    [8] Merchant ME.Mechanics of the metal cutting process. I. Orthogonal cutting and a type 2 chip.Journal of Applied Mechanics, 1945, 16: 267-275
    [9] Burns J, Davies MA.On repeated adiabatic shear band formation during high-speed machining.International Journal of Plasticity, 2002, 18: 487-506
    [10] Atkins AG.Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems.International Journal of Mechanical Sciences, 2003, 45: 373-396
    [11] Fang N.Slip-line modeling of machining with a rounded-edge tool. Part I: new model and theory.Journal of the Mechanics and Physics of Solids, 2003, 51: 715-742
    [12] Ma W, Li XW, Dai LH, et al.Instability criterion of materials in combined stress states and its application to orthogonal cutting process.International Journal of Plasticity, 2012, (30-31): 18-40
    [13] Gu L, Wang M, Duan C.On adiabatic shear localized fracture during serrated chip evolution in high speed machining of hardened AISI 1045 steel.International Journal of Mechanical Sciences, 2013, 75: 288-298
    [14] Ye GG, Xue SF, Ma W, et al.Cutting AISI 1045 steel at very high speeds.International Journal of Machine Tools & Manufacture, 2012, 56: 1-9
    [15] Molinari A, Soldani X, Miguélez MH.Adiabatic shear banding and scaling laws in chip formation with application to cutting of Ti-6Al4V.Journal of the Mechanics and Physics of Solids, 2013, 61: 2331-2359
    [16] Shuang F, Chen X, Ma W.Numerical analysis of chip formation mechanisms in orthogonal cutting of Ti6Al4V alloy based on a CEL model.International Journal of Material Forming, 2017, DOI:10.1007/s12289-017-1341-z
    [17] Zorev NN.Interrelation between shear process occurring along the tool face and on the shear plane in metal cutting. International Research in Production Engineering, Pittsburgh, 1963, 85: 42-49
    [18] Johnson GR, Cook WH.Fracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressures.Engineering Fracture Mechanics, 1985, 21(1): 31-48
    [19] 白以龙, 郑哲敏, 俞善炳. 关于热-- 塑剪切带的演变. 力学学报, 1986, 18(s2): 377-383
    [19] Bai Yilong, Cheng Che-Min, Yu Shanbing.On evolution of thermo-plastic shear bane.Acta Mechanic Sinica, 1986, 18(s2): 377-383 (in Chinese)
    [20] Wright PK, Horne JG, Tabor D.Boundary conditions at the chip-tool interface in machining: Comparison between seizure and sliding friction. Wear, 1979, 54(2): 371-390
    [21] Vyas A, Shaw MC.Mechanics of saw-tooth chip formation in metal cutting.ASME Journal of Manufacture Sciences Engineering, 1999, 121: 163-172
    [22] Jaspers SPFC, Dautzenberg, JH. Material behavior in metal cutting: strains, strain rates and temperatures in chip formation.Journal of Material Processing Technology, 2002, 121: 123-135
    [23] Buda J.New methods in the study of plastic deformation in the cutting zone.CIRP Ann, 1972, 21: 17-18
    [24] Friedman MY, Lenz E.Investigation of tool-chip contact length in metal cutting.International Journal of Machine Tools & Manufacture, 1970, 10: 401-416
    [25] 周刚毅,董新龙,付应乾等. 不同加载状态下 TA2 钛合金绝热剪切破坏响应特性. 力学学报, 2016, 48(6): 1353-1361
    [25] Zhou Gangyi, Dong Xinlong, Fu Yingqian, et al.an experimental study on adiabatic shear behavior of TA2 titanium alloy subject to different loading condition.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(6): 1353-1361 (in Chinese)
    [26] 韩铭宝, 杨青春, 王仁. 充满液体的封闭圆柱壳受轴向冲击塑性失稳的研究. 力学学报, 1987, 19(s1): 132-142
    [26] Han Mingbao, Yang Chingchun, Wang Ren.On the plastic instability of a liquid filled cylindrical tube under impulsive axial loading.Acta Mechanica Sinica, 1987, 19(s1): 132-142 (in Chinese)
    [27] Ma W, Chen X, Shuang F.The chip-flow behaviors and formation mechanisms in the orthogonal cutting process of Ti6Al4V alloy.Journal of the Mechanics and Physics of Solids, 2017, 98: 245-270
    [28] Lee WS, Lin CF.High-temperature deformation behavior of Ti6Al4V alloy evaluated by high strain-rate compression tests.Journal of Materials Processing Technology, 1998, 75: 127-136
    [29] Batra RC, Chen L.Shear band spacing in gradient-dependent thermos-viscoplastic materials.Computer Mechanics, 1999, 23: 8-19
    [30] Lang LH, Xu AJ, Li F.Precision forging technological optimization for 7075 aluminum alloy complex component with limbs.Journal of Materials, 2012, 64: 309-315
    [31] Gioia G, Ortiz M.The two-dimensional structure of dynamic boundary layers and shear bands in thermos-viscoplastic solids.Journal of the Mechanics and Physics of Solids, 1996, 44: 251-292
    [32] Molinari A.Collective behavior and spacing of adiabatic shear bands.Journal of the Mechanics and Physics of Solids, 1997, 45: 1551-1575
    [33] Bai YL.Thermo-plastic instability in simple shear.Journal of the Mechanics and Physics of Solids, 1982, 36: 195-207
  • 加载中
计量
  • 文章访问数:  967
  • HTML全文浏览量:  111
  • PDF下载量:  250
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-04
  • 刊出日期:  2018-01-18

目录

    /

    返回文章
    返回