[1] | Dolling DS.Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530 | [2] | Gaitonde DV.Progress in shock wave / boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80-99 | [3] | Edwards JR.Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 2008, 44: 447-465 | [4] | Knight DD.Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences, 2012, 48: 8-26 | [5] | Dolling DS.High-speed turbulent separated flows: Consistency of mathematical models and flow physics. AIAA Journal, 1998, 36(5): 725-735 | [6] | Pirozzoli S.Numerical methods for high-speed flows. Annual Reviews of Fluid Mechanics, 2011, 43: 163-194 | [7] | 李新亮,傅德薰,马延文. 8阶群速度控制格式及其应用.力学学报, 2004, 36(1): 79-83 | [7] | (Li Xinliang, Fu Dexin, Ma Yanwen.Optimized group velocity control scheme. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 79-83 (in Chinese)) | [8] | Loginov MS, Adams NA, Zheltovodov AA.Large-eddy simulation of shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2006, 565: 135-169 | [9] | Adams NA.Direct simulation of the turbulent boundary layer along a compression ramp at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml86-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml87-0459-1879-50-2-197"><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="normal"> </mml:mi><mml:mn>685</mml:mn></mml:math></inline-formula>. Journal of Fluid Mechanics, 2000, 420: 47-83 | [10] | Pirozzoli S, Grasso F.Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml88-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2006, 18: 065113 | [11] | Wu M, Martin MP.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 2007, 45(4): 879-889 | [12] | Wu M, Martin MP.Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594: 71-83 | [13] | Priebe S, Wu M, Martin MP.Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1-49 | [14] | Helm C, Martin MP, Dupont P.Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. AIAA paper, 2014, 2014-0941 | [15] | Li XL, Fu DX, Ma YW.Direct numerical simulation of shock /turbulent boundary layer interaction in a supersonic compression ramp. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658 | [16] | Fang J, Yao YF, Zheltovodov AA.Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids, 2015, 27: 125104 | [17] | 傅德薰, 马延文, 李新亮等.可压缩湍流直接数值模拟. 北京: 科学出版社, 2010 | [17] | (Fu Dexun, Ma Yanwen, Li Xinliang, et al.Direct Numerical Simulation of Compressible Turbulence. Beijing: Science Press, 2010 (in Chinese)) | [18] | 童福林,李新亮,唐志共.激波与转捩边界层干扰非定常特性数值分析.力学学报, 2017, 49(1): 93-104 | [18] | (Tong Fulin, Li Xinliang, Tang Zhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese)) | [19] | 李新亮,傅德薰,马延文.基于直接数值模拟的可压缩湍流模型评估和改,力学学报, 2012, 44(2): 222-229 | [19] | (Li Xinliang, Fu Dexun, Ma Yanwen.Assessment of the compressible turbulence model by using the DNS data. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229 (in Chinese)) | [20] | Pirozzoli S, Grasso F, Gatski TB.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml89-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2004, 16: 530-545 | [21] | Wu X, Moin P.Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 630: 5-41 | [22] | Erm LP, Joubert J.Low Reynolds number turbulent boundary layers. Journal of Fluid Mechanics, 1991, 230: 1-44 | [23] | Jeong J, Hussain F.On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94 | [24] | Li XL, Fu DX, Ma YW.Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml90-0459-1879-50-2-197"><mml:mi mathvariant="italic">Ma</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math></inline-formula>. Chinese Physics Letter, 2006, 23(6): 1519-1522 | [25] | Grilli M, Hickel S, Adams NA.Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. International Journal of Heat and Fluid Flow, 2013, 42: 79-93 | [26] | Pirozzoli S, Bernardini M, Grasso F.Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2010, 657: 361-393 | [27] | Pirozzoli S, Bernardini M.Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction. AIAA Journal, 2011, 49(6): 1307-1312 | [28] | Clemens NT, Narayanaswamy V.Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Reviews of Fluid Mechanics, 2014, 46: 469-492 | [29] | Schmid PJ.Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28 | [30] | Jovanovic MR, Schmid PJ, Nichols JW.Sparsity promoting dynamic mode decomposition. Physics of Fluids, 2014, 26(2): 024103 |
|