EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速激波湍流边界层干扰直接数值模拟研究

童福林 李欣 于长 李新

童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. doi: 10.6052/0459-1879-17-239
引用本文: 童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. doi: 10.6052/0459-1879-17-239
Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. doi: 10.6052/0459-1879-17-239
Citation: Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. doi: 10.6052/0459-1879-17-239

高超声速激波湍流边界层干扰直接数值模拟研究

doi: 10.6052/0459-1879-17-239
基金项目: 国家自然科学基金(91441103, 11372330)和国家重点研发计划(2016YFA0401200)资助项目.
详细信息
    作者简介:

    null

    2)童福林,助理研究员,主要研究方向:可压缩湍流直接数值模拟. E-mail:515363491@qq.com

  • 中图分类号: V211.3,O241.3;

DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS

  • 摘要: 高超声速激波与湍流边界层干扰会导致飞行器表面出现局部热流峰值,严重影响飞行器气动性能和飞行安全. 针对高马赫数激波干扰问题,以往数值研究多采用雷诺平均方法,而在直接数值模拟方面的相关工作较为少见. 开展高超声速激波与湍流边界层干扰的直接数值模拟研究,有助于进一步提升对其复杂流动机理认识和理解,同时也将为现有湍流模型和亚格子应力模型的改进提供理论依据. 采用直接数值模拟方法对来流马赫数6.0,34°压缩拐角内激波与湍流边界层的干扰问题进行了研究. 基于雷诺应力各向异性张量,分析了高超声速湍流边界层在压缩拐角内的演化特性. 通过对湍动能输运方程的逐项分析,系统地研究了可压缩效应对湍动能及其输运的影响机制. 采用动态模态分解方法,探讨了干扰流场的非定常运动历程. 研究结果表明,随着湍流边界层往下游发展,近壁湍流的雷诺应力状态由两组元轴对称状态逐渐演化为两组元状态,外层区域则由轴对称膨胀趋近于各向同性. 干扰流场内存在强内在压缩性效应(声效应),其对湍动能输运的影响主要体现在压力--膨胀项,而对膨胀--耗散项影响较小. 高超声速下压缩拐角内的非定常运动仍存在以分离泡膨胀/收缩为特征的低频振荡特性,其物理机制与分离泡剪切层密切相关.

     

  • [1] Dolling DS.Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530
    [2] Gaitonde DV.Progress in shock wave / boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80-99
    [3] Edwards JR.Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 2008, 44: 447-465
    [4] Knight DD.Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences, 2012, 48: 8-26
    [5] Dolling DS.High-speed turbulent separated flows: Consistency of mathematical models and flow physics. AIAA Journal, 1998, 36(5): 725-735
    [6] Pirozzoli S.Numerical methods for high-speed flows. Annual Reviews of Fluid Mechanics, 2011, 43: 163-194
    [7] 李新亮,傅德薰,马延文. 8阶群速度控制格式及其应用.力学学报, 2004, 36(1): 79-83
    [7] (Li Xinliang, Fu Dexin, Ma Yanwen.Optimized group velocity control scheme. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 79-83 (in Chinese))
    [8] Loginov MS, Adams NA, Zheltovodov AA.Large-eddy simulation of shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2006, 565: 135-169
    [9] Adams NA.Direct simulation of the turbulent boundary layer along a compression ramp at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml86-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math></inline-formula> and <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml87-0459-1879-50-2-197"><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="normal"> </mml:mi><mml:mn>685</mml:mn></mml:math></inline-formula>. Journal of Fluid Mechanics, 2000, 420: 47-83
    [10] Pirozzoli S, Grasso F.Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml88-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2006, 18: 065113
    [11] Wu M, Martin MP.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 2007, 45(4): 879-889
    [12] Wu M, Martin MP.Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594: 71-83
    [13] Priebe S, Wu M, Martin MP.Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1-49
    [14] Helm C, Martin MP, Dupont P.Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. AIAA paper, 2014, 2014-0941
    [15] Li XL, Fu DX, Ma YW.Direct numerical simulation of shock /turbulent boundary layer interaction in a supersonic compression ramp. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658
    [16] Fang J, Yao YF, Zheltovodov AA.Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids, 2015, 27: 125104
    [17] 傅德薰, 马延文, 李新亮等.可压缩湍流直接数值模拟. 北京: 科学出版社, 2010
    [17] (Fu Dexun, Ma Yanwen, Li Xinliang, et al.Direct Numerical Simulation of Compressible Turbulence. Beijing: Science Press, 2010 (in Chinese))
    [18] 童福林,李新亮,唐志共.激波与转捩边界层干扰非定常特性数值分析.力学学报, 2017, 49(1): 93-104
    [18] (Tong Fulin, Li Xinliang, Tang Zhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese))
    [19] 李新亮,傅德薰,马延文.基于直接数值模拟的可压缩湍流模型评估和改,力学学报, 2012, 44(2): 222-229
    [19] (Li Xinliang, Fu Dexun, Ma Yanwen.Assessment of the compressible turbulence model by using the DNS data. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229 (in Chinese))
    [20] Pirozzoli S, Grasso F, Gatski TB.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml89-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2004, 16: 530-545
    [21] Wu X, Moin P.Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 630: 5-41
    [22] Erm LP, Joubert J.Low Reynolds number turbulent boundary layers. Journal of Fluid Mechanics, 1991, 230: 1-44
    [23] Jeong J, Hussain F.On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94
    [24] Li XL, Fu DX, Ma YW.Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml90-0459-1879-50-2-197"><mml:mi mathvariant="italic">Ma</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math></inline-formula>. Chinese Physics Letter, 2006, 23(6): 1519-1522
    [25] Grilli M, Hickel S, Adams NA.Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. International Journal of Heat and Fluid Flow, 2013, 42: 79-93
    [26] Pirozzoli S, Bernardini M, Grasso F.Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2010, 657: 361-393
    [27] Pirozzoli S, Bernardini M.Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction. AIAA Journal, 2011, 49(6): 1307-1312
    [28] Clemens NT, Narayanaswamy V.Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Reviews of Fluid Mechanics, 2014, 46: 469-492
    [29] Schmid PJ.Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28
    [30] Jovanovic MR, Schmid PJ, Nichols JW.Sparsity promoting dynamic mode decomposition. Physics of Fluids, 2014, 26(2): 024103
  • 加载中
计量
  • 文章访问数:  2411
  • HTML全文浏览量:  269
  • PDF下载量:  934
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-29
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回