EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ALE有限元法的流固耦合强耦合数值模拟

何涛

何涛. 基于ALE有限元法的流固耦合强耦合数值模拟[J]. 力学学报, 2018, 50(2): 395-404. doi: 10.6052/0459-1879-17-197
引用本文: 何涛. 基于ALE有限元法的流固耦合强耦合数值模拟[J]. 力学学报, 2018, 50(2): 395-404. doi: 10.6052/0459-1879-17-197
He Tao. A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 395-404. doi: 10.6052/0459-1879-17-197
Citation: He Tao. A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 395-404. doi: 10.6052/0459-1879-17-197

基于ALE有限元法的流固耦合强耦合数值模拟

doi: 10.6052/0459-1879-17-197
基金项目: 国家自然科学基金资助项目(5150833).
详细信息
    作者简介:

    null

    作者简介:何涛,副研究员,主要研究方向:流固耦合数值模拟与有限元方法. E-mail:taohe@shnu.edu.cn, txh317@bha.ac.uk

  • 中图分类号: O357.1;

A PARTITIONED STRONG COUPLING ALGORITH FOR FLUID-STRUCTURE INTERACTION USING ARBITRARY LAGRANGIAN-EULERIAN FINITE ELEENT FORULATION

  • 摘要: 针对不同流固耦合问题,提出一种基于任意拉格朗日--欧拉(ALE)有限元技术的分区强耦合算法. 运用半隐式特征线分裂算法求解ALE描述下的不可压缩黏性流体Navier-Stokes方程. 分别考虑一般平面运动刚体和几何非线性固体,采用复合隐式时间积分法推进结构运动方程,故可选用较大时间步长;进一步应用单元型光滑有限元法求解几何非线性固体大变形,获得更精确结构解且不影响计算效率. 运用子块移动技术结合正 交--半扭转弹簧近似法高效更新流体动网格;同时将一质量源项引入压力泊松方程满足几何守恒律,无需复杂构造网格速度差分格式. 采用简单高效的固定点法配合Aitken动态松弛技术实现各场耦合,可灵活选择先进单场求解技术,具备较好程序模块性. 运用本文算法分别模拟了H型桥梁截面颤振问题和均匀管道流内节气阀涡激振动问题. 研究表明,数值结果与已有文献数据吻合,计算精度和求解效率均令人满意.

     

  • [1] 王英学, 高波, 任文强. 高速铁路隧道缓冲结构气动载荷与结构应力特性分析. 力学学报, 2017, 49(1): 48-54
    [1] (Wang Yingxue, Gao Bo, Ren Wenqiang.Aerodynamic load and structure stress analysis on hood of high-speed railway tunnel.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 48-54 (in Chinese))
    [2] 刘晶波, 宝鑫, 谭辉等. 波动问题中流体介质的动力人工边界. 力学学报, 2017, 49(6): 1418-1427
    [2] (Liu Jingbo, Bao Xin, Tan Hui, et al.Dynamical artificial boundary for fluid medium in wave motion problems.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1418-1427 (in Chinese))
    [3] 杜特专, 王一伟, 黄晨光等. 航行体水下发射流固耦合效应分析. 力学学报, 2017, 49(4): 782-792
    [3] (Du Tezhuan, Wang Yiwei, Huang Chenguang, et al.Study on coupling effects of underwater launched vehicle.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 782-792 (in Chinese))
    [4] 陈伟民, 付一钦, 郭双喜等. 海洋柔性结构涡激振动的流固耦合机理和响应. 力学进展, 2017, 47(1): 25-91
    [4] (Chen Weimin, Fu Yiqin, Guo Shuangxi, et al.Fluid-solid coupling and dynamic response of vortex-induced vibration of slender ocean cylinders.Advances in Mechanics, 2017, 47(1): 25-91 (in Chinese))
    [5] He T, Zhang K, Wang T.AC-CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using stabilized second-order pressure scheme.Communications in Computational Physics, 2017, 21(5): 1449-1474
    [6] 周岱, 何涛, 涂佳黄. 流固耦合分析的一种改进CBS 有限元算法. 力学学报, 2012, 44(3): 494-504
    [6] (Zhou Dai, He Tao, Tu Jiahuang.A modified CBS finite element approach for fluid-structure interaction.Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(3): 494-504 (in Chinese))
    [7] 陈威霖, 及春宁, 徐万海. 并列双圆柱流致振动的不对称振动和对称性迟滞研究. 力学学报, 2015, 47(5): 731-739
    [7] (Chen Weilin, Ji Chunning, Xu Wanhai.Numerical investigation on the asymmetric vibration and symmetry hysteresis of flow-induced vibration of two side-by-side cylinders.Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5): 731-739 (in Chinese))
    [8] 孙旭, 张家忠, 黄必武. 弹性薄膜类流固耦合问题的CBS有限元分析. 力学学报, 2013, 45(5): 787-791
    [8] (Sun Xu, Zhang Jiazhong, Huang Biwu.An application of the cbs scheme in the fluid-membrane interaction.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 787-791 (in Chinese))
    [9] 刘赵淼, 南斯琦, 史艺. 中等严重程度冠状动脉病变模型的血流动力学参数分析. 力学学报, 2017, 49(6): 1058-1064
    [9] (Liu Zhaomiao, Nan Siqi, Shi Yi.Hemodynamic parameters analysis for coronary artery stenosis of intermediate severity model.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1058-1064 (in Chinese))
    [10] 周岱, 何涛, 刘光众. 基于改进CIBC方法的方柱驰振预测. 水动力学研究与进展A辑, 2013, 28(4): 391-398
    [10] (Zhou Dai, He Tao, Liu Guangzhong.Numerical analysis of free rotation gallop of a rectangular cylinder using improved CIBC method.Chinese Journal of Hydrodynamics, 2013, 28(4): 391-398 (in Chinese))
    [11] He T.Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes.Wind and Structures, 2015, 20(3): 423-448
    [12] Le Tallec P, Mouro J.Fluid structure interaction with large structural displacements.Computer Methods in Applied Mechanics and Engineering, 2001, 190(24-25): 3039-3067
    [13] Küttler U, Wall W.Fixed-point fluid-structure interaction solvers with dynamic relaxation.Computational Mechanics, 2008, 43(1): 61-72
    [14] Bai Y, Sun D, Lin J.Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES.Computers & Fluids 2010, 39(9): 1549-1561
    [15] Sun D, Owen JS, Wright NG.Application of the k-w turbulence model for a wind-induced vibration study of 2D bluff bodies.Journal of Wind Engineering and Industrial Aerodynamics 2009, 97: 77-87
    [16] He T, Zhang K.Combined interface boundary condition method for fluid-structure interaction: Some improvements and extensions.Ocean Engineering, 2015, 109: 243-255
    [17] He T.A CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using MCIBC method.Computer Methods in Applied Mechanics and Engineering, 2016, 298: 252-278
    [18] He T, Zhang K.An overview of the combined interface boundary condition method for fluid-structure interaction.Archives of Computational Methods in Engineering, 2017, 24(4): 891-934
    [19] 何涛. 流固耦合数值方法研究概述与浅析. 振动与冲击, 2018, 37(4): 184-190
    [19] (He Tao.Numerical solution techniques for fluid-structure interaction simulations: A brief review and discussion.Journal of Vibration and Shock, 2018, 37(4): 184-190 (in Chinese))
    [20] Zienkiewicz OC, Nithiarasu P, Codina R, et al.The characteristic-based-split procedure: An efficient and accurate algorithm for fluid problems.International Journal for Numerical Methods in Fluids, 1999, 31: 359-392
    [21] Normura T, Hughes TJR.An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body.Computer Methods in Applied Mechanics and Engineering, 1992, 95(1): 115-138
    [22] Bathe KJ, Ramm E, Wilson EL.Finite element formulations for large deformation dynamic analysis.International Journal for Numerical Methods in Engineering, 1975, 9(2): 353-386
    [23] Dai KY, Liu GR.Free and forced vibration analysis using the smoothed finite element method (SFEM).Journal of Sound and Vibration, 2007, 85: 803-820
    [24] Hamrani A, Habib SH, Belaidi I.CS-IGA: A new cell-based smoothed isogeometric analysis for 2D computational mechanics problems.Computer Methods in Applied Mechanics and Engineering, 2017, 315: 671-690
    [25] Bathe KJ, Noh G. Insight into an implicit time integration scheme for structural dynamics. Computers & Structures, 2012, 98-99: 1-6
    [26] He T.On a partitioned strong coupling algorithm for modeling fluid-structure interaction.International Journal of Applied Mechanics, 2015, 7: 1550021
    [27] Zhang J.Accuracy of a composite implicit time integration scheme for structural dynamics.International Journal for Numerical Methods in Engineering, 2017, 109(3): 368-406
    [28] Newmark NM.A method of computation for structural dynamics.Journal of Engineering Mechanics-ASCE, 1959, 85(3): 67-94
    [29] Collatz L.The Numerical Treatment of Differential Equations. New York: Springer-Verlag, 1960
    [30] Kuhl D, Crisfield MA.Energy-conserving and decaying algorithms in nonlinear structural dynamics.International Journal for Numerical Methods in Engineering, 1999, 45: 569-599
    [31] Piperno S, Farhat C, Larrouturou B.Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application.Computer Methods in Applied Mechanics and Engineering, 1995, 124(1): 79-112
    [32] Lefrançois E.A simple mesh deformation technique for fluid-structure interaction based on a submesh approach.International Journal for Numerical Methods in Engineering, 2008, 75: 1085-1101
    [33] Markou GA, Mouroutis ZS, Charmpis DC, et al.The ortho-semi-torsional (OST) spring analogy method for 3D mesh moving boundary problems.Computer Methods in Applied Mechanics and Engineering, 2007, 196: 747-765
    [34] Jan YJ, Sheu TWH.Finite element analysis of vortex shedding oscillations from cylinders in the straight channel.Computational Mechanics, 2004, 33: 81-94
    [35] Etienne S, Garon A, Pelletier D.Perspective on the geometric conservation law and finite element methods for ALE simulations of incompressible flow.Journal of Computational Physics, 2009, 228: 2313-2333
    [36] He T, Zhou D, Bao Y. Combined interface boundary condition method for fluid-rigid body interaction. Computer Methods in Applied Mechanics and Engineering, 2012,223-224: 81-102
    [37] He T, Zhou D, Han Z, et al.Partitioned subiterative coupling schemes for aeroelasticity using combined interface boundary condition method.International Journal of Computational Fluid Dynamics, 2014, 28: 272-300
    [38] He T.A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder.International Journal of Computational Methods, 2015, 12(2): 1550012
    [39] Piperno S.Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations.International Journal for Numerical Methods in Fluids, 1997, 25: 1207-1226
    [40] Filippini G, Dalcin L, Nigro N, et al. Fluid-rigid body interaction by PETSc-FEM driven by Python. Mecánica Computacional, 2008, XXVII: 489-504
    [41] Dettmer W, Perié D.A computational framework for fluid-rigid body interaction: Finite element formulation and applications.Computer Methods in Applied Mechanics and Engineering, 2006, 195(13-16): 1633-1666
    [42] Olivier M, Dumas G, Morissette JF.A fluid-structure interaction solver for nano-air-vehicle flapping wings//Proceedings of the 19th AIAA Computational Fluid Dynamics, San Antonio, USA, 2009: 1-15
    [43] Baiges J, Codina R.The fixed-mesh ALE approach applied to solid mechanics and fluid-structure interaction problems.International Journal for Numerical Methods in Engineering, 2010, 81: 1529-1557
  • 加载中
计量
  • 文章访问数:  1170
  • HTML全文浏览量:  121
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-03
  • 刊出日期:  2018-03-18

目录

    /

    返回文章
    返回