[1] |
Fang XQ, Liu JX, Gupta V. Fundamental formulations and recent achievements in piezoelectric nano-structures:A review. Nanoscale, 2013, 5(5):1716-1726 doi: 10.1039/c2nr33531j
|
[2] |
Voon LC, Willatzen M. Electromechanical phenomena in semi-conductor nanostructures. Journal of Applied Physics, 2011, 109:031101 doi: 10.1063/1.3533402
|
[3] |
Lao CS, Kuang Q, Wang ZL. Polymer functionalized piezoelectricFET as humidity/chemical nanosensors. Applied Physics Letters, 2007, 90(26):262107 doi: 10.1063/1.2748097
|
[4] |
Wang XD, Zhou J, Song JH, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letters, 2006, 6(12):2768-2772 doi: 10.1021/nl061802g
|
[5] |
孔艳平, 刘金喜. PMN-PT层/弹性基底结构中声表面波特性分析.力学学报, 2015, 47(3):493-502 doi: 10.6052/0459-1879-14-299Kong Yanping, Liu Jinxi. Surface acoustic wave propagation in the PMN-PT layer/elastic substrate. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):493-502 (in Chinese) doi: 10.6052/0459-1879-14-299
|
[6] |
Stan G, Ciobanu CV, Parthangal PM, et al. Diameter-dependent radial and tangential elastic moduli of ZnO nanowires. Nano Letters, 2007, 7(12):3691-3697 doi: 10.1021/nl071986e
|
[7] |
Chen CQ, Shi Y, Zhang YS, et al. Size dependence of Young's modulus in ZnO nanowires. Physical Review Letters, 2006, 96(7):075505 doi: 10.1103/PhysRevLett.96.075505
|
[8] |
徐巍, 王立峰, 蒋经农.基于应变梯度中厚板单元的石墨烯振动研究.力学学报, 2015, 47(5):751-761 doi: 10.6052/0459-1879-15-074Xu Wei, Wang Lifeng, Jiang Jingnong. Finite element analysis of strain gradient middle thick plate model on the vibration of graphene sheets. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(5):751-761 (in Chinese) doi: 10.6052/0459-1879-15-074
|
[9] |
唐宇帆, 任树伟, 辛锋先等. MEMS系统中微平板结构声振耦合性能研究.力学学报, 2016, 48(4):907-916 http://lxxb.cstam.org.cn/CN/abstract/abstract145761.shtmlTang Yufan, Ren Shuwei, Xin Fengxian, et al. Scale effect analysis for the vibroacoustic performance of a micro-plate. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4):907-916 (in Chinese) http://lxxb.cstam.org.cn/CN/abstract/abstract145761.shtml
|
[10] |
陈玲, 沈纪苹, 李成等.梯度型非局部高阶梁理论与非局部弯曲新解法.力学学报, 2016, 48(1):127-134 doi: 10.6052/0459-1879-15-170Chen Ling, Shen Jiping, Li Cheng, et al. Gradient type of nonlocal higher-order beam theory and new solution methodology of nonlocal bending deflection. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1):127-134 (in Chinese) doi: 10.6052/0459-1879-15-170
|
[11] |
杨刚, 张斌.类石墨烯二维原子晶体的微态理论模型.力学学报, 2015, 47(3):451-457 doi: 10.6052/0459-1879-14-282Yang Gang, Zhang Bin. Micromorphic model of graphene-like two-dimensional atomic crystals. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3):451-457 (in Chinese) doi: 10.6052/0459-1879-14-282
|
[12] |
Miller RE, Shenoy VB. Size-dependent elastic properties of nanosized structural elements. Nanotechnology, 2000, 11(3):139-147 doi: 10.1088/0957-4484/11/3/301
|
[13] |
Cammarata RC. Surface and interface stress effects in thin films. Progress in Surface Science, 1994, 46(1):1-38 doi: 10.1016/0079-6816(94)90005-1
|
[14] |
Murdoch AI. The propagation of surface waves in bodies with material boundaries. Journal of the Mechanics and Physics of Solids, 1976, 24(2):137-146 https://www.researchgate.net/publication/222087105_The_propagation_of_surface_waves_in_bodies_with_material_boundaries
|
[15] |
Gurtin ME, Murdoch AI. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis, 1975, 57(4):291-323 https://www.researchgate.net/publication/225935208_A_Continuum_Theory_of_Elastic_Material_Surfaces
|
[16] |
Chen WQ, Wu B, Zhang CL, et al. On wave propagation in anisotropic elastic cylinders at nanoscale:surface elasticity and its effect. Acta Mechanica, 2014, 225(10):2743-2760 doi: 10.1007/s00707-014-1211-4
|
[17] |
Huang GY, Yu SW. Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Physica Status Solidi (b), 2006, 243(4):R22-R24 doi: 10.1002/(ISSN)1521-3951
|
[18] |
Yan Z, Jiang LY. Surface effects on the electromechanical coupling and bending behaviours of piezoelectric nanowires. Journal of Physics D:Applied Physics, 2011, 44(7):075404 doi: 10.1088/0022-3727/44/7/075404
|
[19] |
Yan Z, Jiang LY. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology, 2011, 22(24):245703 doi: 10.1088/0957-4484/22/24/245703
|
[20] |
Yan Z, Jiang LY. Electromechanical response of a curved piezoelectric nanobeam with the consideration of surface effects. Journal of Physics D:Applied Physics, 2011, 44(36):365301 doi: 10.1088/0022-3727/44/36/365301
|
[21] |
Zhang CL, Chen WQ, Zhang C. On propagation of anti-plane shear waves in piezoelectric plates with surface effect. Physics Letters A, 2012, 376(45):3281-3286 doi: 10.1016/j.physleta.2012.09.027
|
[22] |
Zhang LL, Liu JX, Fang XQ, et al. Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physica E:Low-dimensional Systems and Nanostructures, 2014, 57:169-174 doi: 10.1016/j.physe.2013.11.007
|
[23] |
Chen WQ. Surface effect on Bleustein-Gulyaev wave in a piezoelectric half-space. Theoretical and Applied Mechanics Letters, 2011, 1(4):041001 doi: 10.1063/2.1104101
|
[24] |
Bleustein JL. A new surface wave in piezoelectric materials. Applied Physics Letters, 1968, 13(12):412-413 doi: 10.1063/1.1652495
|
[25] |
Gulyaev YV. Electroacoustic surface waves in solids. Soviet Physics JETP, 1969, 9:37-38 doi: 10.1007/BF00818735
|
[26] |
Stroh AN. Dislocations and cracks in anisotropic elasticity. Philosophical Magazine, 1958, 3(25):625-646 https://www.researchgate.net/publication/239064714_Dislocations_and_Cracks_in_Anisotropic_Elasticity
|
[27] |
Stroh AN. Steady state problems in anisotropic elasticity. Journal of Mathematical Physics, 1962, 41(2):77-103
|
[28] |
Lothe J, Barnett DM. Integral formalism for surface waves in piezoelectric crystals. Existence considerations. Journal of Applied Physics, 1976, 47(5):1799-1807 doi: 10.1063/1.322895
|
[29] |
Barnett DM, Lothe J. Free surface (Rayleigh) waves in anisotropic elastic half-spaces:the surface impedance method. Proceedings of the Royal Society of London A, 1985, 402(1822):135-152 doi: 10.1098/rspa.1985.0111
|
[30] |
Lothe J, Barnett D M. Further development of the theory for surface waves in piezoelectric crystals. Physica Norvegica, 1977, 8(4):239-254
|
[31] |
Abbudi M, Barnett DM. On the existence of interfacial (Stoneley) waves in bonded piezoelectric half-spaces. Proceedings of the Royal Society of London A, 1990, 429(1877):587-611 doi: 10.1098/rspa.1990.0075
|
[32] |
Tiersten HF. Wave propagation in an infinite piezoelectric plate. Journal of the Acoustical Society of America, 1963, 35(2):234-239 doi: 10.1121/1.1918438
|
[33] |
Ding HJ, Chen WQ. Three Dimensional Problems of Piezoelasticity. New York:Nova Science Publishers, 2001
|
[34] |
Soh AK, Liu J, Lee KL, et al. Moving dislocations in general anisotropic piezoelectric solids. Physica Status Solidi (b), 2005, 242(4):842-853 doi: 10.1002/(ISSN)1521-3951
|
[35] |
Ding HJ, Liang J. The fundamental solutions for transversely isotropic piezoelectricity and boundary element method. Computers & Structures, 1999, 71(4):447-455 https://www.researchgate.net/publication/256919242_Fundamental_solutions_for_transversely_isotropic_piezoelectricity_and_boundary_element_method
|
[36] |
Sezawa K, Kanai K. Discontinuity in dispersion curves of Rayleighwaves. Bulletin of the Earthquake Research Institute, 1935, 13:237-244 https://www.researchgate.net/publication/29774476_Discontinuity_in_the_Dispersion_Curves_of_Rayleigh_Waves
|